
Cloj ure and
The Robot Apocalypse

Needfuls for Newbies

Introduction

Today we will learn about Clojure!
Quick background - Scott and Portico
twitter.com/sfraser

http://www.porticosys.com

Why Cloj ure?

From Mark Volkmann's Clojure Page's "long article":
Are you looking for a way to make concurrent programming
easier?
Are open to branching outside the world of object-oriented
programming to try functional programming?
Is it important for the applications you write to run on the
JVM in order to take advantage of existing Java libraries,
portability and other benefits?
Do you prefer dynamically-typed languages over statically-
typed ones?
Do you find the minimal, consistent syntax of Lisp dialects
appealing?

http://ociweb.com/mark/clojure/
http://ociweb.com/mark/clojure/article.html

Tell me more about this. NOW.

Clojure and it's "Four Legs"
Functional Programming
Lisp
Hosted on Java Virtual Machine (JVM)
Concurrency

Sidebar - Programming "Paradigms"

Programming Languages have different ways they abstract,
present and organize their constructs to facilitate the
problem solving process
Some programming languages are "purely functional"
Others, such as Clojure and Scala, are "multi-paradigm"
Clojure is Imperative, Functional, Concurrent and Reflective
Other Paradigms you may know:

Visual
Object-Oriented
Actor based
Declarative

Second Sidebar - Some Basics

Clojure has Numbers, Strings, Characters, Keywords,
Symbols, and Collections
Collections:

List: '(1 2 3)
Vector: [1 2 3]
Maps: {:key1 "Value1" :key2 "Value2"}
Sets: #{"This" "is" "a" "Set"}

All collections can be treated as "Sequences"
Sequences in Clojure are like LISP Lists but at a higher
level of abstraction
"Lazy" Sequences are evaluated on demand

http://clojure.org/data_structures
http://clojure.org/data_structures
http://clojure.org/sequences

Second Sidebar - More Basics

Data is immutable with optional metadata attached
Code is Data - Data is Code!
Clojure is Dynamically Typed
There is NO interpreter!
Uses Prefix notation (aka Polish Notation)
Programs are composed of expressions:

 '(1 2 3)
 (+ 2 3)
 (- (+ 2 3) 5)
 (+ 1 2 3)
 (prn (+ 1 2 3))
 (hello "world")

http://en.wikipedia.org/wiki/Dynamic_type#Dynamic_typing

First Leg - Functional Programming

First Leg - Functional Programming

An Imperative Program describes an explicit series of steps that
mutate state
Functional Programming is NOT Imperative
Functional Programming has a Declarative style
Declarative programming means stating WHAT you want as
opposed to HOW
Functional programs avoid "side-effects" by absence of state and
mutable data
Functional programs lean on composition of mathematical
functions as opposed to Imperative logic operating on stateful
mutating VARIABLES
Consider what a "Variable" is... something that VARIES

Declarative versus Imperative

Declarative:
SELECT * FROM users WHERE fname = 'Dude'

Imperative:
tbl = users
IF tbl.fname.hasIndex():

resultSet = tbl.fname.searchWithIndex('Dude')
ELSE

resultSet = tbl.fname.tableScan('Dude')

Functional versus Imperative

Functional Programming avoids "side effects"
Imperative Programming relies on "side effects"
Functional Programming's absence of side effects
provides referential transparency

Functional Programming focuses on assembling functions
Imperative Programming focuses on specifying a series of
steps that mutate state to solve a problem
In simple cases Functional programs resemble
mathematical expressions describing a relationship
Imperative Programs read like scripted steps

Functional vs. Imperative Example

Add digits 1 to 10 and print result:
imperative style in Java:

int accumulate = 0;
for(int i=1; i<=10; i++) accumulate+=i
System.out.println(accumulate);

functional style in Clojure:
(println (reduce + (range 11)))

"reduce" in clojure is a sequence transformation
Other transformations available include "map" and "for"
Note in the above example the "print" is a "side-effect"

More Variations on the Theme

Enough Clojure trickery... what if you didn't know about
"reduce"? How else can we accumulate the digits without a
sequence transformation?

(loop [accum 0 i 10]
 (if (pos? i)
 (recur (+ accum i) (dec i))
 accum))

How Functional is Clojure?

Clojure supports FP in many ways:
First-class functions
Immutable Data Structures
Recursive Looping
Mutual recursion (trampoline)
Lazy Sequences
Memoization

See http://clojure.org/functional_programming
Rich Hickey is a pragmatist - Clojure encourages functional
programming, but does not mandate it

http://clojure.org/functional_programming

Second Leg - LISP

Second Leg - LISP

LISt Processing language
Known for its heavily parenthesized syntax
The code is made up of S-expressions
The DATA is made up of S-expressions!
So in a LISP, code is data... and data is code.
This gives LISP (and Clojure) homoiconicity
This facilitates the famous "macro" system of LISP that can
extend the very language itself

http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Homoiconicity
http://en.wikipedia.org/wiki/Macro_%28computer_science%29#Lisp_macros

Second Leg - LISP

What does LISP look like?
Factorial function:

What would this look like in Clojure?

Actually, you would probably do it like this:

Second Leg - LISP - Homoiconicity

The power of Code = Data cannot be overemphasized
This gives Clojure a leg up over many other popular kids on
the JVM, such as JRuby
Macros allows you to extend the compiler
This is pervasive throughout - many core language features
are macros, not language primitives! Examples:

Branching: and, or, when
Looping: for, while
Syntactic Sugar: doto
Java interop: proxy
Transactions: dosync

http://clojure.org/macros

Second Leg - LISP - Macro Example

Java has the "assert" statement
To change it would require a new release and
implementations of the Java Language Specification
Clojure has "assert", implemented as a macro:

(defmacro assert
 "Evaluates expr and throws an exception if it does not
evaluate to logical true."
 [x]
 `(when-not ~x (throw
 (new Exception (str "Assert failed: " (pr-str '~x))))))

http://java.sun.com/docs/books/jls/third_edition/html/statements.html#14.10
http://code.google.com/p/clojure/source/browse/trunk/src/clj/clojure/core.clj?r=1334#2811

An excellent presentation on Lisp Macros is here
The author, Phillip Calçado, demonstrates implementing a
LINQ feature in Ruby versus Clojure

Second Leg - LISP - More Macros

http://fragmental.tw/2009/01/20/presentation-slides-macros-in-20-minutes/

Third Leg - JVM

Third Leg - JVM

Clojure is always compiled to JVM bytecode, either at
runtime or Ahead of Time (AOT)
Full access to the Java platform API's
Provides special syntactical sugar for Java
Some of it's libraries operate with Java objects
Implementation of Java classes is possible using clojure
proxies with some limitations

Interfaces may be implemented
Classes may be "extended", but there is no access to
protected members of the proxied class

Clojure uses reflection when needed
Java "Type Hints" can be used for performance

http://clojure.org/java_interop
http://clojure.org/java_interop#toc25
http://clojure.org/java_interop#toc25
http://clojure.org/java_interop#toc35

Third Leg - JVM - Other Notes

Clojure supports Java arrays natively, primarily for
interoperation with existing Java API's
Java Primitives types are supported, also for performance
This support shows up in numerous ways including:

Coercion operations (think Java unboxing)
Clojure libraries that are overloaded when they process
arrays of Java primitives
Support for primitives in let/loop bound locals
Type Hints for primitive arrays

http://clojure.org/java_interop#toc27
http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html

Third Leg - JVM - Gimmee Sugar!

Clojure has lots of sugary goodness to lighten things up
Example in Java:

 final int procs =
 Runtime.getRuntime().availableProcessors();

Now in Clojure:

(def procs
 (.. Runtime getRuntime availableProcessors))

http://clojure.org/java_interop#toc1

Third Leg - JVM - More Sugar!

In Java:
 import java.util.HashMap;
 import java.util.HashSet;
 final HashMap myMapOfSets = new HashMap();
 {
 final HashSet mySet = new HashSet();
 mySet.add("Item");
 myMapOfSets.put("Set1", mySet);
 }

In Clojure:
 (import '(java.util HashMap HashSet))
 (def myMapOfSets (doto (HashMap.)
 (.put "Set1" (doto (HashSet.) (.add "Item")))))

Fourth Leg - Concurrency

Fourth Leg - Concurrency

Rick Hickey feels strongly about "state" and the challenges
of managing concurrency in typical imperative programming
languages
He will reference these feelings when answering "why did
you make Clojure"
His opinions are compelling, and resonate with me, as
someone who works with highly multi-threaded code
Code example!

Fourth Leg - Clojure's Approach

Clojure's explicitly isolates changeable state using four
specific constructs:

Vars
Refs
Atoms
Agent

Ideally a program will have:
a safe, immutable, functional model
a stateful mutable model accessed only via
constructs listed above

Clojure uniquely combines Software Transactional
Memory (STM) and immutable data to ease concurrent
pain and eliminate locks

Fourth Leg - Concurrency Links

Clojure's approach to Identity and State.
Clojure Concurrency - Rich Hickey presents to Western
Mass. Developers Group

22 Min : "mutable objects are the new spaghetti code"
and then he posits that the drive for TDD is related to the
difficulties related to mutability
53 Min : great explanation of problems with multithreaded
code and locking strategies

Clojure could be to Concurrency-Oriented Programming
what Java was to OOP - Compares Erlang Actors to Clojure
Agents, and lot's more thoughts and links

http://clojure.org/state
http://clojure.blip.tv/#819147
http://bc.tech.coop/blog/081201.html
http://bc.tech.coop/blog/081201.html

Fourth Leg - Concurrency - Vars

Vars refer to a mutable storage location that can be rebound
at the thread level
Rebindings on a thread can occur over and over, and the
bindings will "pop" out of scope like a stack
Think of "thread local" variables with an optional "root level"
binding
Usage of a Var is safe because it is isolated at the thread
level
If a thread binds a new value to a Var, only that thread sees
it
Vars are Dynamically Scoped

http://en.wikipedia.org/wiki/Lexical_scope#Dynamic_scoping

Fourth Leg - Concurrency - Vars

Example:

 (def myVar "Outer Value")
 (do (prn myVar)
 (binding [myVar "Inner Value"] (prn myVar))
 (prn myVar))

Output:
 Outer Value
 Inner Value
 Outer Value

Fourth Leg - Concurrency - Vars

Clojure functions defined with defn are actually in Vars too,
and thus can be rebound too!

(defn holla [name] (prn (format "%s Rulz!" name)))

(defn rebind-example []
 (binding
 [holla (fn [name] (prn (format "%s Droolz!" name)))]
 (holla "SQL Server"))
 (holla "Oracle"))

Output:
 SQL Server Droolz!
 Oracle Rulz!

Fourth Leg - Concurrency - Refs

Vars can't share state between threads, Refs can
Refs use STM (discussed later) to provide shared state that
is safe
Mutation of what a Ref points at must be in a "transaction"
For more detail see Refs and Transactions
For strict and synchronized mutation of Refs, Clojure
provides "alter", or for "last one in wins" use "commute"
Refs are dereferenced with "deref" or "@"
Validators may be attached to Refs and used in a similar
fashion to a database constraint - they literally roll the
transaction back when violated!

http://clojure.org/refs
http://clojure.org/api#alter
http://clojure.org/api#commute

Fourth Leg - Refs Example

user> (def autoindex (ref 0))
user> @autoindex
0
user> (alter autoindex inc)
java.lang.IllegalStateException: No transaction running
user> (dosync (alter autoindex inc))
1
user> @autoindex
1
user> (defn get-index [] (dosync (alter autoindex inc)))
user> (get-index)
2
user> @autoindex
2

Fourth Leg - Refs and STM

Refs rely on Clojure's implementation of Software
Transactional Memory (STM)
Clojure's STM is based on MultiVersion Concurrency
Control (MVCC) and provides Atomicity, Consistency, and
Isolation - but not Durability
For a short and sweet description, refer to the Concurrency
chapter in Programming Clojure
There are some STM detractors
These detractors come at this from the Operating
System/Database/VM Kernal perspective, so I am not sure
how to apply their thoughts to this world

http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://www.pragprog.com/titles/shcloj/programming-clojure

Fourth Leg - STM Debate

Clojure: STMs vs Locks - debate between Hickey and Cliff
Click Jr of Azul Systems (former architect and lead
developer at Sun of the HotSpot Server Compiler)
Concurrency's Shysters - Written by Bryan Cantrill of Sun
(and author of DTrace) on why the sky is not falling
Software transactional memory: why is it only a research
toy? Authored by numerous IBM researchers and Colin
Blundell of U. Penn.
Real-world Concurrency - Great history on concurrency in
hardware and software, followed by best practices. Written
by Bryan Cantrill and Jeff Bonwick (author of ZFS).

http://blogs.azulsystems.com/cliff/2008/05/clojure-stms-vs.html
http://blogs.sun.com/bmc/entry/concurrency_s_shysters
http://portal.acm.org/citation.cfm?doid2=1400214.1400228
http://portal.acm.org/citation.cfm?doid2=1400214.1400228
http://delivery.acm.org/10.1145/1460000/1454462/p16-cantrill.html?key1=1454462&key2=0546577321&coll=ACM&dl=ACM&CFID=27773543&CFTOKEN=61099569

Fourth Leg - Concurrency - Agents

Think of Erlang's Actors (message-passing actors), but non-
autonomous and not meant to be "distributed"
From Agents and Asynchronous Actions:

"Clojure's Agents are reactive, not autonomous - there is
no imperative message loop and no blocking receive."

Clojure Agents provide asynchronous concurrency
You "send" an action to an Agent, and Clojure uses a
worker thread to dispatch those actions interleaved with
others one at a time to the Agent
Agents, like Refs, rely on Clojure's STM
Agents can have validators and watchers

http://clojure.org/agents

Fourth Leg - Concurrency - Atoms

Atoms are like Refs without the STM overhead
You can update multiple Refs in a single transaction
because of it's reliance on Clojure's STM
Atoms are standalone entities whose updating cannot be
coordinated - they do NOT participate in transactions
Clojure uses Atoms in its memoization implementation

http://clojure.org/atoms
http://en.wikipedia.org/wiki/Memoization

Fourth Leg - Atoms

Clojure uses Atoms in it's implementation of memoize:
(defn memoize
 [f]
 (let [mem (atom {})]
 (fn [& args]
 (if-let [e (find @mem args)]
 (val e)
 (let [ret (apply f args)]
 (swap! mem assoc args ret)
 ret)))))

Get You Some Clojure Dawg

Three Easy Steps:
svn co http://clojure.googlecode.com/svn/trunk/
clojure
cd clojure
ant

You will probably want clojure-contrib also:
 svn co http://clojure-contrib.googlecode.
com/svn/trunk/ clojure-contrib
cd clojure-contrib
ant

Got REPL?
java -cp clojure-contrib.jar:clojure.jar clojure.
main

Tooling?

Enclojure - http://enclojure.net/Index.html
Emacs Clojure mode - http://www.lysator.liu.
se/~lenst/darcs/clojure-mode/
Another Emacs mode, and Swank server (slime) for clojure
- http://clojure.codestuffs.com/
Syntax file for VIM: http://repo.or.cz/w/clojure-patches.git?
a=blob_plain;f=vim/clojure.vim;hb=HEAD
IntelliJ Plugin - http://plugins.intellij.net/plugin/?id=4050

http://enclojure.net/Index.html
http://www.lysator.liu.se/%7Elenst/darcs/clojure-mode/
http://www.lysator.liu.se/%7Elenst/darcs/clojure-mode/
http://clojure.codestuffs.com/
http://repo.or.cz/w/clojure-patches.git?a=blob_plain;f=vim/clojure.vim;hb=HEAD
http://repo.or.cz/w/clojure-patches.git?a=blob_plain;f=vim/clojure.vim;hb=HEAD
http://plugins.intellij.net/plugin/?id=4050

Tim Conway's Game of Life

http://www.youtube.com/watch?v=CFCYVfApPUc

Parallelized Game of Life Code

Code Review
Where does the magic happen?

(defn calc-state [cell-state mycells batch-set next-color]
 (let [new-cells (ref {})]
 (dorun
 (pmap #(update-batch-of-new-cells new-cells %)
 (pmap #(calc-batch-of-new-cell-states
 cell-state % mycells next-color)
 batch-set)))
 (dosync (ref-set mycells @new-cells))))

Robot Time

jus chillaxin.
wif mah robot.

Robots!!!

SRV-1 Console Code Review
http://www.inertialabs.com/srv.htm

http://www.inertialabs.com/srv.htm

Recommended

http://www.pragprog.com/titles/shcloj/programming-clojure

http://www.pragprog.com/titles/shcloj/programming-clojure

Thank you!

The Philly Lambda Group and the Functional Programming
evangelists who introduced me to Clojure (Kyle Burton,
Mike DeLaurentis, etc...)

http://groups.google.com/group/philly-lambda
Rich Hickey and the folks behind Clojure:

http://clojure.org/

http://groups.google.com/group/philly-lambda
http://clojure.org/

