
Rube Goldberg 
Architecture

Ezra Zygmuntowicz

Building a Better 
Mousetrap for the 

Cloud



3 Pillars of a good 
Cloud Infrastructure

Automation

Command & Control

Scalable State Storage



Automation:
Chef

Command & Control:
Nanite

Scalable State Storage:
Redis



Go big or go home...



Automation: Chef

• Idempotent configuration management

• Embed-able and flexible

• Heavy lifting behind Solo/Flex

• No more “every server is a unique 
snowflake”

• Badass



Basic Concepts:

Resources

Recipes

Providers



Resources:

apt_package
bash
cron
csh

directory
execute

file
gem_package

group
http_request

link
mount

package
perl

portage_package
python

remote_directory
remote_file

route
ruby
script

service
template

user



Recipes:



Providers:



Converging

• Recipes are loaded in specified order

• Resources are compiled into objects and 
stored in a ResourceCollection

• ResourceCollection is iterated and the 
right Provider for each Resource is invoked

• The Providers runs the specified action on 
each Resource



Chef Solo

• chef-solo -r http://foo.com/recipes.tgz

• Downloads a tarball of recipes and runs 
them

• Dead simple to get started with

http://foo.com/recipes.tgz
http://foo.com/recipes.tgz


Chef Server

• chef-client

• Communicates with the chef-server to get 
recipes and JSON data

• Allows for searching across other nodes 
attributes

• Uses open-id for node authentication



Chef Server



State Storage: Redis

persistent memcached on steroids



Redis Features

• Asynchronous Persist to disk

• Horizontally scalable

• Values can have types

• STRING’s, LIST’s and SET’s

• Atomic Operations (push, pop, incr, decr, 
set intersection)



Let’s see a demo



Nanite



Built around RabbitMQ

• Written in erlang, cluster-able, highly 
scalable, fast as hell.

• AMQP protocol provides many nice 
features

• Transient, Persistent and Transactional 
semantics



<3 RabbitMQ



Nanite agents
consist of multiple Actors



Nanite agents advertise
their services and status

Feeds#crawl
advertises:
/feeds/crawl

Load average is advertised 
as default status



Nanite Mappers

Track nanites and their advertised services and status

Can do dispatch based on a number of factors

Run inside your Merb or Rails app or as a 
separate service

State of all nanites is replicated across all mappers 
in memory *or* stored in Redis



Multiple Dispatch 
Styles



Least loaded dispatch 
and the fitness function



Agents ping the mapper exchange 
every @ping_time seconds.

Mappers track the state of all 
nanites and remove them from 

mapping if they haven’t reported in 
within a timeout



Nanite gives us:

• Presence, we know when nanites are ready 
for requests or not.

• Self assembly, nanites can come and go and 
can run anywhere with zero configuration 
in the mappers.

• Dispatch based on load or any fitness 
function that suits your app

• Easily take advantage of cloud



https://cloud.engineyard.com/ete.sh

Please download and run this shell script:

Nanite Demo

https://cloud.engineyard.com/ete.sh
https://cloud.engineyard.com/ete.sh


Questions?


