
Grails Seminar
11/12/09

The Grails Plugin System
Modular Application Development With Grails

The Background
• Grails is designed to wire

together different libraries
and make them easy to use

• In this sense it can be seen
as a "platform for runtime
configuration"

• De-coupling those
components was hard
without a well defined
system

The Extension Points

• The Build System

• Spring Application
Context

• Dynamic method
registration

• Auto Reloading

• Container Config

Plug-in Architecture

Plugin Plugin Plugin Plugin

Grails Runtime Environment

GrailsApplication ApplicationContext

Read Conventions
Register Bean Definitions

Plug-in Goals

• The system should be embrace
convention-based approaches and DRY

• All required extension points should be
satisfied

• Plug-ins should be easy to
distribute, install with zero
configuration

What is a Plug-in?

• Just like a normal Grails
project!

• The only difference is the
presence of a
*GrailsPlugin.groovy file

• Use grails create-
plugin to create one!

What can a Plug-in do?

• Add new methods,
constructors, properties
etc. to any class at
runtime

• Perform runtime Spring
configuration

• Modify web.xml on the fly

• Add new controllers, tag

A Plug-in Project

A Plug-in project is the same as a
regular Grails project except it has
a special plug-in Groovy definition

Plugging In Dynamic Methods

• We know the conventions, but how
do we easily take advantage of
them to modify types?

• Grails users needed an easy way to
add dynamic methods, properties,
constructors etc.

• No out-of-the box solution in Groovy so
we created ExpandoMetaClass (EMC)

Overview of Plug-in Closures

• A Plug-in can specify multiple closures
each of which can manipulate Grails:

‣ doWithSpring - Participate in Spring
configuration

‣ doWithApplicationContext - Post
ApplicationContext initialisation activities

‣ doWithWebDescriptor - Modify the XML
generated for web.xml at runtime!

‣ doWithDynamicMethods - Add
methods!

class LoggingGrailsPlugin {

 def version = 0.4
 def dependsOn = [core:"0.4.2 > 1.0"]

 def doWithDynamicMethods = {
 application.allClasses.each { c ->
 c.metaClass.getLog = {->
 LogFactory.getLog(c)
 }
 }
 }
}

A Basic Plug-in
The Plug-in Version

Plug-in Dependencies

Grails Seminar
11/12/09

DEMO
Creating a Plug-in

Packaging & Installation

• Installation of Grails plug-ins can then
be achieved with a few simple
commands:

grails package-plugin

cd ../my-project

grails install-plugin
 ../logging/grails-Logging-0.4.zip

// or remotely
grails install-plugin
 http://myserver/logging/grails-Logging-0.4.zip

Adding Basic Artefacts

• A Plug-in can add new tag libraries,
controllers and services simply by
creating them in the plug-in project

• Since a plug-in project is just like any
project you can run and debug a plug-
in in its own project before distributing
it

• Once you're done package and
distribute it!

// Configuring Spring
class JcrGrailsPlugin {
 def version = 0.1
 def dependsOn = [core:0.4]

 def doWithSpring = {
 jcrRepository(RepositoryFactoryBean) {
 configuration =
 "classpath:repository.xml"
 homeDir = "/repo"
 }
 }
}

Configuring Spring

Bean name is method name, first
argument is bean class

Set properties on the bean

Advantages of Spring DSL

• Since it is just Groovy code it can
contain complex logic that is
dependant on

‣ The Environment

‣ The Conventions in the project

‣ Anything!

• Thanks to Groovy's neat syntax for
lists and maps it is very easy to
specify complex bean definitions

Reload Events

• Grails applications must be
reloadable during development

• Plug-ins can defined
watchedResources that fire
onChange events when modified

Watching Resources

Resource

Resource

Resource

Plugin A

Plugin B

Fire onChange

Fire onChange

Watched Resources

class I18nGrailsPlugin {
 def version = "0.4.2"
 def watchedResources =
 "file:../grails-app/i18n/*.properties"

 def onChange = { event ->
 def messageSource =
 event.ctx.getBean("messageSource")

 messageSource?.clearCache()
 }
}

Example Reloading Plug-in

Defines a set of files to watch using
Spring resource pattern

When one changes, event is fired and
plug-in responds by clearing message

cache

The Event Object

• event.source - The source of the
change which is either a Spring
Resource or a java.lang.Class if the
class was reloaded

• event.ctx - The Spring
ApplicationContext

• event.application - A
GrailsApplication

• event.manager - A

Finding Plug-ins

• Grails has a central plug-in repo where
you can access plugins:

// lists all plugins
grails list-plugins

// install latest version of searchable
grails install-plugin searchable

// install version 0.3 of searchable
grails install-plugin searchable 0.3

Becoming a Plugin Developer

• Talk about your idea here:

‣ http://grails.org/Mailing+lists

• Get access to the plug-in repo here:

‣ http://xircles.codehaus.org/projects/
grails-plugins/members

• Build your plug-in and type:

‣ grails release-plugin

• You’re done!

Summary

• The Grails plug-in system is
flexible and powerful

• Plug-ins can do just about
anything from adding new
methods to configuring Spring
beans

• Grails has a growing plug-in
community

Q & A

