
Web
Services
Security

Strategies for Securing Your
SOA

Aaron Mulder
CTO – Chariot Solutions

2 Web Services Security - October 2005

Agenda

• Define Web Services Security
• DIY Security
• HTTPS
• WS-Security
• WS-I Basic Security Profile
• Conclusion
• Q&A

Defining Web
Services Security

4 Web Services Security - October 2005

Security Features

• Covered Here
– Authentication
– Integrity
– Confidentiality

• Not Included
– Authorization
– Auditing
– Identity Management / Federation

5 Web Services Security - October 2005

Authentication

• Who's calling the service?
• Identify the caller by:

– Username/password
– Client certificate
– SAML
– Kerberos
– Rights Expression Language
– Others...?

6 Web Services Security - October 2005

Integrity

• No one can change the content of the message
en route
– Doesn't mean no one can read it, just that no

one can alter it without the alteration being
obvious

• SSL provides point-to-point protection, but an
intermediary can alter the data if the message
doesn't go directly from the sender to the
recipient

7 Web Services Security - October 2005

Confidentiality

• No one other than the intended recipient can
observe the contents of the message
– Doesn't mean no one can alter it, just that no

one can see the contents
• SSL provides point-to-point protection, but if

there are intermediaries, each intermediary can
read the message and may potentially leave it in
plain text when it's passed on

8 Web Services Security - October 2005

Intermediaries

• Management systems (e.g. direct to
appropriate route according to terms of
service)

• 3rd party authentication systems (e.g.
process authentication and redirect body
accordingly)

• Initial destination is in a DMZ
• Message uses a non-HTTP protocol like

JMS or SMTP

9 Web Services Security - October 2005

Unified Government Database Queries

• Want 1 query system to access multiple back-end
record-keeping systems (3 guesses why)

• Prefer to send "index cards" to central database for
queries, rarely hit back-end systems directly

• Existing JMS infrastructure, operating strictly
between government agencies

• Must include authentication and integrity (plus
extensive auditing requirements)

Case Study

Implementation:
DIY Security

11 Web Services Security - October 2005

DIY Overview

• Build security information into the message
content or message headers

• Authentication: Easy
• Integrity: Hard
• Confidentiality: Hard

12 Web Services Security - October 2005

DIY Authentication

• Can include a username, password, or ID
token (SAML, Kerberos, etc.) in the SOAP
request body
– Could also put it in the header and add a

handler to the request processing chain

• Often a staple of public, pre-Web Services
XML interfaces

• Can be combined with HTTPS later

13 Web Services Security - October 2005

DIY Integrity/Confidentiality

• Many languages have Crypto APIs, so you
can do this in a theoretically "portable" way

• But it would be quite manual, and you'd
have to standardize things like:
– Algorithms & encoding of binary data
– Which parts of the request to cover
– What modifications or formatting other systems

are allowed to do

• Probably easier to just use WS-Security

14 Web Services Security - October 2005

Unified Government Database Queries

• Can use DIY authentication
– Incorporate identification, agency, etc. into

request message or headers

• Can use DIY integrity
– XML Digital Signature on message body, though

everyone involved will need to support it

• Don't need confidentiality
– Essentially private JMS transport

Case Study & DIY

Implementation:
HTTPS

16 Web Services Security - October 2005

HTTPS Overview

• The default option for for any HTTP Web
Service that needs to be secured

• Provides confidentiality and integrity (but
usually not authentication) for a point to
point connection

• Requires either a certificate signed by a
trusted authority or a limited set of clients

17 Web Services Security - October 2005

HTTPS Advantages

• Performs well (which is to say, server
implementations are optimized and
hardware acceleration is commonly
available)

• Only requires a server certificate to
establish a secure channel

• Any web server can provide HTTPS, and
pass the content on to subsequent logic

18 Web Services Security - October 2005

HTTPS Disadvantages

• Client certificates may or may not be easy
to support, and may or may not be passed
through to authentication logic
– Often combined with DIY authentication

• Not secure when used with intermediaries
• Does not protect non-HTTP protocols

– JMS, JMS, JMS

19 Web Services Security - October 2005

Implementing HTTPS Security

• Web Services code is no different than for
HTTP-based Web Services

• Just a matter of configuring the client and
the server for HTTPS
– Correct certificates, trust store, etc.

• Authentication via client certificates may
require extra configuration (e.g. to pass
certificate information from the web server
to the application server)

20 Web Services Security - October 2005

Unified Government Database Queries

• Not an option due to the JMS infrastructure
• Even if it were possible, it's hard to prove that the

message wasn't altered by an intermediary since
you can't tell if the HTTPS client is the original one
or somewhere down the chain

Case Study & HTTPS

Implementation:
WS-Security

22 Web Services Security - October 2005

WS-Security 1.0 Overview

• Originally "just a couple companies", now
more widely accepted and becoming the
Web Services security standard

• Built on previous XML (not necessarily Web
Services) security standards
– Includes authentication, integrity, and

confidentiality

• Being incorporated into future standards
efforts

23 Web Services Security - October 2005

WS-Security Advantages

• Covers all 3 AIC goals
• Works well with intermediaries and non-

HTTP protocols
• Can selectively protect content, e.g.

– Password but not message
– Different parts of message for different

intermediaries or recipients (password vs.
credit card)

• Tools & libraries are becoming available

24 Web Services Security - October 2005

WS-Security Disadvantages

• Still a lot of loose room in the spec (from
prior drafts, etc.)

• Performance is not so good compared to
HTTPS
– Hardware acceleration rare
– Processed by SOAP stack not web server

• Not well integrated into SOAP platforms yet
• Interoperability can still be a challenge

25 Web Services Security - October 2005

WS-Security Implementations

• Apache WSS4J (open source)
– Core logic
– JAX-RPC integration
– Axis integration

• Sun JWSDP (free)
– JAX-RPC integration

• Vendor tools
– .NET, WebMethods, WebLogic, etc.

26 Web Services Security - October 2005

WS-Security Interoperability

• Version 1 of Product A to Version 2 of
Product B
– Yes

• Minor changes of version, off by one
service pack, or trying to use a new
product:
– Not necessarily

• Best to pick a favorable server and limit the
set of acceptable clients

27 Web Services Security - October 2005

Unified Government Database Queries

• Can be used for authentication and integrity
• An alternative to custom embedding of

authentication information
• An alternative to "plain" XML Digital Signature

– Should come with better tool support
– Will (eventually) be quite interoperable
– Fine for now, since the set of clients is fairly

limited

Case Study & WS-Security

28 Web Services Security - October 2005

WS-Security with WSS4J & Axis

• WSS4J chosen because it is free / open
source and has good interoperability and
JAX-RPC is a PITA

• Axis chosen because WSS4J has built-in
Axis and JAX-RPC support but see above

• Google knows how to configure other tool
sets for WS-Security

29 Web Services Security - October 2005

WSS4J & Axis Architecture

Axis

WSS4J
Axis Handler

Application
Code

WSS4J
Core

Transport
1

2

3

4

5

30 Web Services Security - October 2005

Steps to Run

• Deploy Axis in Tomcat, copy in various JARs
• Write a web service back-end (POJO)

• Write a .WSDD file for the service

• Deploy it
• Use WSDL2Java to generate a client
• Make sure the client talks to the server
• Run TCPMon and configure the client for it

– Observe the insecure call

31 Web Services Security - October 2005

Steps to Run, cont.

• Create a client-side .WSDD with security

• Write Callback Handlers (for authentication);
prepare keystores & config files (for integrity
and/or confidentiality)

• Run client again
– Should fail, but see security stuff in TCPMon

• Update and redeploy server .WSDD

• Run client again, should work

32 Web Services Security - October 2005

Getting Axis Running

• Install Tomcat (I used 5.5.12)
• Download Axis (I used 1.3)
• Download WSS4J (I used 1.1.0)

• Copy Axis webapps/axis to Tomcat
webapps directory

• Copy JavaMail, JAF, Bouncycastle, Apache
XML Security, WSS4J, and OpenSAML
JARs into tomcat/webapps/axis/WEB
INF/lib & axisinstall/lib

33 Web Services Security - October 2005

Confirm Axis Installation

• Visit http://localhost:8080/axis and
http://localhost:8080/axis/happyaxis.jsp

• Check that the Axis happiness page does
not complain about any missing libraries

34 Web Services Security - October 2005

Writing the Web Service

• Can just be a POJO – we'll set any public
methods to be exposed as services

public class Sample {

 public int[] getValues() {

 return new int[]{12, 14};

 }

 public String getName(int value) {

 return "Name "+value;

 }

}

35 Web Services Security - October 2005

Deploying the Web Service

• Compile and copy the class to the WEB
INF/classes of the Axis web app

• Create a .WSDD file for Axis:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java=
 "http://xml.apache.org/axis/wsdd/providers/java">
 <service name="Sample" provider="java:RPC">
 <parameter name="className"
 value="org.test.Sample"/>
 <parameter name="allowedMethods" value="*"/>
 </service>
</deployment>

36 Web Services Security - October 2005

Deploying the Web Service, cont.

• Restart Tomcat (to make sure web service
class is visible)

• Run Axis deploy tool with .WSDD file:

java -classpath ... org.apache.axis.client.AdminClient
sample.wsdd

• Need all libs from axis/lib on the Class
Path for this command to work (and all
subsequent commands too)

37 Web Services Security - October 2005

Confirm Service

• Visit
http://localhost:8080/axis/servlet/AxisServlet
to confirm that the service is listed

• Click the WSDL link next to the service to
make sure it works

38 Web Services Security - October 2005

Generate Client Code

• Use the Axis WSDL2Java tool to generate
client code

java -classpath ... org.apache.axis.wsdl.WSDL2Java
-o outputDirectory
http://localhost:8080/axis/services/Sample?wsdl

• Check for the generated code under
localhost/axis/services/ServiceName/ in
the output directory (this package can be
configured)

39 Web Services Security - October 2005

Write Client main()

• Create a class to call the client:

public static void main(String args[]) {
 try {
 SampleService service =
 new SampleServiceLocator();
 Sample port = service.getSample();
 int[] all = port.getValues();
 String name = port.getName(all[0]);
 System.out.println("Output: " + name);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

40 Web Services Security - October 2005

Test the Client

• Compile the class with the main method
along with all the generated client code

• Run the main class, with all the axis/lib
JARs on the Class Path

• Should get the expected output (in this
case, "Output: Name 12")

41 Web Services Security - October 2005

Start the TCPMon

• An Axis tool to let us show the SOAP
request and response

• Start it like this:

java -classpath ... org.apache.axis.utils.tcpmon

• Put in a different port (8050) as the Listen
Port # and hit "Add"

42 Web Services Security - October 2005

TCPMon

43 Web Services Security - October 2005

Update Client for TCPMon

• Override the URL used to contact the
service in the main() method, using the port
that TCPMon is running on instead:

SampleService service = new SampleServiceLocator();

Sample port = service.getSample(new URL(

 "http://localhost:8050/axis/services/Sample"));

...

• Recompile and run the client again

44 Web Services Security - October 2005

Observed Request
<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- note: no SOAP header present -->
 <soapenv:Body>
 <ns1:getValues soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="http://axis.sample.org"/>
 </soapenv:Body>
</soapenv:Envelope>

45 Web Services Security - October 2005

Add Authentication to Client

• Create a client-side .WSDD file:
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java=
 "http://xml.apache.org/axis/wsdd/providers/java">
 <service name="Sample">
 <requestFlow>
 <handler type=
 "java:org.apache.ws.axis.security.WSDoAllSender">
 <parameter name="action" value="UsernameToken"/>
 <parameter name="user" value="SomeUsername"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="passwordCallbackClass"
 value="org.test.TestCallbackHandler"/>
 </handler>
 </requestFlow>
 </service>
</deployment>

46 Web Services Security - October 2005

Create Client Callback Handler

• The authentication logic uses a JAAS
callback handler to gather missing
information (such as the password)

• The callback type is WSPasswordCallback,
which is a WSS4J class

• You need to write a callback handler that
takes one of these and provides (in this
case) the password

47 Web Services Security - October 2005

Test Callback Handler Code

public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {
 Callback callback = callbacks[i];
 if(callback instanceof WSPasswordCallback) {
 WSPasswordCallback pwc =
 (WSPasswordCallback) callback;
 pwc.getIdentifier(); //username from .WSDD
 pwc.setPassword("mypassword");
 } else {
 throw new UnsupportedCallbackException(callback);
 }
 }
}

48 Web Services Security - October 2005

Server-Side Callback Handler

• The server side will also use a Callback
Handler, with the same Callback type, to
validate the authentication
– It should throw an exception if the username

and/or password was not valid

• You can use the same handler on both sides
for test purposes – so long as it doesn't
throw an exception the server will assume
the authentication is valid

49 Web Services Security - October 2005

Deploy Callback Handler

• Put the class in a JAR in:
– tomcat/webapps/axis/WEBINF/lib

• The server-side callback handler

– axis/lib
• The client-side callback handler

• Restart Tomcat to make sure the server-side
one is picked up

50 Web Services Security - October 2005

Update the Client Configuration

• Deploy the client .WSDD to create a
clientconfig.wsdd file in the current
directory

java -classpath ... org.apache.axis.utils.Admin client
sample-client.wsdd

• Confirm that clientconfig.wsdd was
written and has settings for the Sample
service

51 Web Services Security - October 2005

Test the Client

• Run the client code again, with client
config.wsdd in the current directory or on
the Class Path (and the client callback
handler on the Class Path)

• Observe the request in TCPMon
• Should get a SOAP Fault as a response

because the server doesn't understand the
authentication request yet (and it's marked
for mandatory processing)

52 Web Services Security - October 2005

Observed Request w/ Auth
<soapenv:Envelope xmlns:soapenv="..." xmlns:xsd="..."
xmlns:xsi="...">
 <soapenv:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>Aaron</wsse:Username>
 <wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">mypassword</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 ...

53 Web Services Security - October 2005

Update Server .WSDD
<deployment xmlns="..." xmlns:java="...">
 <service name="Sample" provider="java:RPC">
 <parameter name="className" value="org.test.Sample"/>
 <parameter name="allowedMethods" value="*"/>
 <requestFlow>
 <handler type=
 "java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass"
 value="org.test.TestCallbackHandler"/>
 <parameter name="action" value="UsernameToken"/>
 </handler>
 </requestFlow>
 </service>
</deployment>

54 Web Services Security - October 2005

Redeploy Server Side

• Run Axis deploy tool with updated server-
side .WSDD file:

java -classpath ... org.apache.axis.client.AdminClient
sample.wsdd

• Visit the Axis service list page and WSDL
just to make sure you don't get any weird
errors
– Putting some JARs in common/lib instead of
WEBINF/lib causes problems

55 Web Services Security - October 2005

Retry Client

• Should work!
• Server response is unchanged for

authentication
• If you put output in the callback hander(s),

you should see it on both the client side
(gathering the info) and the server side
(validating the info)

• Can now try more meaningful service
implementation, callback handers, etc.

56 Web Services Security - October 2005

Encrypt the Password, Client

• Update the client-side .WSDD file:
<deployment ...>
 ...
 <handler type=
 "java:org.apache.ws.axis.security.WSDoAllSender">
 <!-- include same parameters as before plus: -->
 <parameter name="addUTElement" value="Nonce Created" />
 <parameter name="encryptionPropFile"
 value="crypto.properties" />
 <parameter name="encryptionKeyIdentifier"
 value="X509KeyIdentifier" />
 <parameter name="encryptionUser" value="cert-ID" />
 <parameter name="encryptionParts"
 value="{Element}{http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd}UsernameToken" />
 </handler>

57 Web Services Security - October 2005

Encrypt the Password, Server
<deployment xmlns="..." xmlns:java="...">
 <service name="Sample" provider="java:RPC">
 <parameter name="className" value="org.test.Sample"/>
 <parameter name="allowedMethods" value="*"/>
 <requestFlow>
 <handler type=
 "java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass"
 value="org.test.TestCallbackHandler"/>
 <!-- action is updated, prop file is new -->
 <parameter name="action"
 value="UsernameToken Encrypt"/>
 <parameter name="decryptionPropFile"
 value="crypto.properties" />
 </handler>
...

58 Web Services Security - October 2005

Create crypto.properties Files

• Used by both client and server to point to a
keystore. The named file (and listed
keystore file) should be on the Class Path.
It should look like:

org.apache.ws.security.crypto.provider=
 org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.file=my-keystore-file
org.apache.ws.security.crypto.merlin.keystore.type=JKS
org.apache.ws.security.crypto.merlin.keystore.password=foo
org.apache.ws.security.crypto.merlin.keystore.alias=my-key

59 Web Services Security - October 2005

Encryption Issues

• If there are many clients and one server, it
may be convenient for each client to
include its own public key in the request

• Need to make sure Axis doesn't reformat
the SOAP message before passing it on

• Can layer handlers to significantly change
settings for different parts of the body

• There are configuration options for this stuff
and more

60 Web Services Security - October 2005

More Use Cases

• Also easy to sign all or part of the SOAP
body

• Also easy to sign and encrypt all of the
SOAP body

• Also possible to separately sign/encrypt
multiple chunks within the SOAP body

• Signing and encrypting can use the same or
different keystore properties files

61 Web Services Security - October 2005

WSS4J & Axis Thoughts

• It works
• Documentation is poor and scattered
• Not obvious how to use WSS4J for J2EE

web services
– Perhaps can hook in via JAX-RPC handlers?
– May not be possible to hook WS authentication

to server's authentication mechanism

• If you have a friendlier web services tool
set with WS-Security support, use it!

The Future: WS-I
Basic Security Profile

63 Web Services Security - October 2005

About WS-I BSP

• Web Services Interoperability Organization
• WS-I Basic Profile ensures interoperability

between J2EE, .Net, and other Web
Services implementations
– Includes SOAP/WSDL but not security

• WS-I Basic Security Profile is currently in
draft, including WS-Security and various
authentication token types

64 Web Services Security - October 2005

WS-I BSP Expectations

• WS-Security interoperability is getting
better but will remain somewhat hit or miss
until WS-I BSP is finalized

• Once WS-I BSP is finalized, J2EE specs
and various products will include support
and be certified for interoperability

• You may prefer not to deploy WS-Security
until this happens
– Or, find out your vendor's certification plans

Conclusion

66 Web Services Security - October 2005

Questions for Securing Services

1) Will you use JMS or other intermediaries?
2) What are the performance requirements?
3) What is the set of possible clients?
4) What types of authentication are required?
5) Are integrity and/or confidentiality required?

If so, on what parts of the message?
6) What are the platform/vendor's plans for

WS-I BSP support?

67 Web Services Security - October 2005

Conclusion

• Depending on the answers, WS-Security
may be a good way to go
– Main challenges are performance and

interoperability with arbitrary SOAP stacks

• HTTPS is relatively high-performance and
very interoperable, but:
– It requires an authentication solution
– It only works for HTTP-based Web Services

Discussion

Aaron Mulder: ammulder@chariotsolutions.com

Download slides at: http://www.chariotsolutions.com/

