
Haskell in the corporate environment

Jeff Polakow
October 17, 2008

Talk Overview

●Haskell and functional programming

●System description

●Haskell in the corporate environment

Functional Programming
in Industry

● FP languages spreading into industry
– Haskell, OCaml, F#, Erlang

● FP ideas spreading into mainstream languages
– garbage-collection, generics, iterators

● FP already widely used
– Javascript, Spreadsheets

Haskell in Industry
(haskell.org/haskellwiki/Haskell_in_industry)

● Finance
– Credit Suisse, Standard Chartered

● Science & Engineering
– Amgen, Eaton

● Contractors
– Galois, Aetion

General Haskell Description
(from haskell.org)

● Haskell is an advanced purely functional programming
language.

● An open source product of more than twenty years of cutting
edge research, it allows rapid development of robust, concise,
correct software.

● With strong support for integration with other languages, built-
in concurrency and parallelism, debuggers, profilers, rich
libraries and an active community, Haskell makes it easier to
produce flexible, maintainable high-quality software.

Haskell

● Language specification
– Haskell 98 report
– Common extensions

● Language implementation
– Several compilers
– GHC is only industrial strength one

haskell.org

Functional Programming

● Program is a function
i.e. takes an input value and produces an output value

● Value can be many things
– basic things, e.g. numbers, strings, etc...
– pairs of values
– functions
– user defined, i.e. datatypes

● Recursion

Higher-order Functions

● Function which takes a function as input

● Modular design

● Code reuse

● Custom control structures

Purity
● No observable effects from execution of function

– no mutable memory (i.e. can't change a variable's value)
– no exceptions
– no IO

● Effects added back in a controlled manner
– can put pure code into effectful code
– encourages modular design
separate program logic from interaction with outside world

● Allows for interesting possibilities
– possibility of heavy compiler optimization
– simpler user interface for STM

Lazy Evaluation

● Only evaluate expressions which are used
– call-by-need evaluation
– requires different mode of thinking from most

languages

● Infinite data structures (i.e. streams)

● Allows declarative style
enumerate xs = zip xs [1 ..]

enumerate ['a','b','c'] == [('a',1), ('b',2), ('c',3)]

Strong Static Types

● Guarantee some errors can't happen

● Help with refactoring

● Help structure program
– Algebraic datatypes
– Know possible structure of all values of a given type

data BinTree a = Leaf a
 | Branch a (BinTree a) (BinTree a)

Parametric Polymorphism

● Function works the same on all input types
– fst :: (a , b) → a
– length :: [a] → Int

● Code reuse

Ad-hoc Polymorphism

● Function overloading

● Function acts differently on different types

● Specify how function acts on each type

● Static type error to use function at unspecified type

Type Inference

● Most types can be inferred

● Type discipline is unobtrusive

● Can also explicitly specify type
– good documentation
– type checker will complain if inferred type conflicts

Haskell is a High Level Language

● Very expressive type system

● Powerful abstraction mechanisms

● Small gap between description and
 implementation

Syntax

● Can be very concise

● Optionally whitespace dependent
– visually specify scope
– removes need for lots of parentheses

● Can be addictive

Real World Haskell System

●Small credit trading group

●Credit markets are opaque

●Information management is main task

●Quantitative analysis less important

System Overview

●Database and Web system

●Scheduler to spawn autonomous tasks

●Several communicating pieces

●Distributed over several computers

System Architecture

HAppS

Scheduler

Master
data server

Slave
data server

Slave
data server

User

User

database

tasktask Slave
data server

task

Novelties

●Statically typed tables with mini SQL DSL
–Manipulate tables in memory
–Generates SQL queries to create a table in memory

●Automatic generation of RPC wrappers

●Proc monad for logical process machinery

●Abstract (socket-based) server machinery

The Good

●Usual stuff
–Types & type classes for static guarantees
–First class (higher-order) functions for code reuse

●Purity
–Able to upgrade old (poorly documented) code with relative
ease

●Performance not an issue (for our purposes)

The Bad

●Upgrading to new Haskell implementation was
painful
–Some libraries don't like XP
–Some libraries don't like cabal-install

●Errors / inadequacies of some libraries

●Most library documentation is poor

Useful Haskell Tools

●Database access tools
–HDBC, Takusen, etc...

●Web tools
–HAppS, powerful but difficult to install and learn
–HSP, WASH, etc...
–Curl bindings, FTP lib work pretty well

●Ability to write stable server-like programs
–Great lightweight threads support
–Good socket interface

●Scripting
–ghci as a shell, HSH
–Good string processing machinery

●Foreign library interaction
–FFI, plus helper tools, are good
–No easy way to use .NET or Java libs

●Development Environment
–GHC is easy to install & low maintenance
–Libraries are not always easy to install
–Available IDEs not adequate for everyone

Useful Haskell Tools

Useful Haskell Tools
● Testing tools

– Quickcheck
– Smallcheck
– HUnit

● Step Debugger

● Memory use Profiler

● Haskell community
– haskell irc
– haskell-cafe

●But it helps if you are
– free to try drastically new things
– capable of functioning without IT dept support
– a seasoned Haskell programmer
– comfortable with laziness/strictness trade offs
– comfortable reading library source code
– capable of understanding and fixing linker errors

Yes

Is Haskell ready for use
in the corporate environment?

 For more info: haskell.org

