Haskell in the corporate environment

Jett Polakow
October 17, 2008



Talk Overview

*Haskell and functional programming
*System description

eHaskell 1n the corporate environment



Functional Programming
In Industry

e FP languages spreading into industry
— Haskell, OCaml, F#, Erlang

e FP 1deas spreading into mainstream languages
— garbage-collection, generics, iterators

* FP already widely used

— Javascript, Spreadsheets



Haskell in Industry

(haskell.org/haskellwiki/Haskell _in_industry)

 Finance
— Credit Suisse, Standard Chartered

e Science & Engineering
- Amgen, Eaton

e Contractors
— @Galois, Aetion



General Haskell Description

(from haskell.org)

e Haskell 1s an advanced purely functional programming
language.

e An open source product of more than twenty years of cutting
edge research, 1t allows rapid development of robust, concise,
correct software.

o With strong support for integration with other languages, built-
in concurrency and parallelism, debuggers, profilers, rich
libraries and an active community, Haskell makes it easier to
produce flexible, maintainable high-quality software.



Haskell

* Language specification
— Haskell 98 report
— Common extensions

e Language implementation
— Several compilers
— GHC 1s only industrial strength one

haskell.org



Functional Programming

e Program is a function
1.e. takes an input value and produces an output value

e Value can be many things
— basic things, e.g. numbers, strings, etc...
— pairs of values
— functions
— user defined, 1.e. datatypes

e Recursion



Higher-order Functions

Function which takes a function as input
Modular design
Code reuse

Custom control structures



Purity

e No observable effects from execution of function

— no mutable memory (i.e. can't change a variable's value)

— no exceptions
- no 10

o Effects added back in a controlled manner
— can put pure code 1nto effectful code
— encourages modular design
separate program logic from interaction with outside world

* Allows for interesting possibilities
— possibility of heavy compiler optimization
— simpler user interface for STM



Lazy Evaluation

e Only evaluate expressions which are used
— call-by-need evaluation
- requires different mode of thinking from most
languages

o Infinite data structures (1.e. streams)

o Allows declarative style

enumerate xs = zip xs [1 ..]

enumerate ['a','b','c'] ==[('a',1), ('b",2), ('c',3)]



Strong Static Types

e Guarantee some errors can't happen
e Help with refactoring

e Help structure program
— Algebraic datatypes
— Know possible structure of all values of a given type

data BinTree a = Leaf a
| Branch a (BinTree a) (BinTree a)



Parametric Polymorphism

e Function works the same on all input types
- fst::(a,b) — a
- length :: [a] — Int

e Code reuse



Ad-hoc Polymorphism

Function overloading
Function acts differently on different types
Specify how function acts on each type

Static type error to use function at unspecified type



Type Inference

e Most types can be inferred
e Type discipline 1s unobtrusive

e Can also explicitly specify type
- good documentation
- type checker will complain 1f inferred type conflicts



Haskell is a High Level Language

e Very expressive type system
e Powertful abstraction mechanisms

e Small gap between description and
implementation



Syntax

e Can be very concise

e Optionally whitespace dependent
— visually specify scope
— removes need for lots of parentheses

e Can be addictive



Real World Haskell System

*Small credit trading group
*Credit markets are opaque
eInformation management 1s main task

*Quantitative analysis less important



System Overview

*Database and Web system
*Scheduler to spawn autonomous tasks
*Several communicating pieces

*Distributed over several computers



System Architecture

-

database

User

HAppS

Scheduler

Master
data server

Slave
data server

Slave
data server

Slave
data server



Novelties

Statically typed tables with min1 SQL DSL
—Manipulate tables in memory
—Generates SQL queries to create a table in memory

e Automatic generation of RPC wrappers
*Proc monad for logical process machinery

* Abstract (socket-based) server machinery



The Good

eUsual stuff
-Types & type classes for static guarantees
—First class (higher-order) functions for code reuse

*Purity
—-Able to upgrade old (poorly documented) code with relative
ease

ePerformance not an 1ssue (for our purposes)



The Bad

*Upgrading to new Haskell implementation was
painful
—Some libraries don't like XP

—Some libraries don't like cabal-install

*Errors / inadequacies of some libraries

*Most library documentation is poor



Useful Haskell Tools

eDatabase access tools
-HDBC, Takusen, etc...

*Web tools
-HAppS, powerful but difficult to install and learn

-HSP, WASH, etc...
—Curl bindings, FTP lib work pretty well

*Ability to write stable server-like programs
—Great lightweight threads support
-Good socket interface



Useful Haskell Tools

*Scripting
—ghci as a shell, HSH
—-Good string processing machinery

eForeign library interaction
-FF1, plus helper tools, are good
—-No easy way to use .NET or Java libs

*Development Environment

—GHC 1s easy to install & low maintenance
—Libraries are not always easy to install
—Available IDEs not adequate for everyone



Useful Haskell Tools

Testing tools
— Quickcheck
— Smallcheck
— HUnit

Step Debugger
Memory use Profiler

Haskell community
— haskell irc
— haskell-cafe



Is Haskell ready for use
in the corporate environment?

Yes

*But 1t helps 1f you are
— free to try drastically new things
— capable of functioning without IT dept support
— a seasoned Haskell programmer
— comfortable with laziness/strictness trade offs
— comfortable reading library source code
— capable of understanding and fixing linker errors

For more info: haskell.org



