
J. B. RAINSBERGER
 SPRING 2008

EMERGING TECHNOLOGY FOR THE ENTERPRISE CONFERENCE IN PHILADELPHIA	 March 27, 2008

Teams
Avoid common pitfalls when you begin your agile journey

Five Mistakes 
New Agile Teams Make

The road to hell is paved with good intentions, and I imagine there is a special section 
of hell reserved for those who have tried to “go agile”.

Naturally, there are some common, large-scale reasons an agile transition can fail. One 
particularly funny pair of obstacles goes together well: either there is a lack of executive or 
management support, or not enough buy-in on the ground for a top-down agile rollout. 
One particularly vexing obstacle comes when business decision-making, and not 
producing features, is the primary reason that customers are not satisfied. I could go on, but 
these large-scale problems have one punishing property in common: they feel 
overwhelmingly intractable. Rather than exert energy pretending to know how to solve 
these larger organization problems, I’d prefer to focus on relatively simple mistakes that 
agile pilot teams seem to make. The good news is that we absolutely can avoid these 
mistakes, as long as we know what they are and can see the warning signs. These mistakes 
are the topic of the day.

Remember, it’s just numbers

Focusing on velocity
I can remember my first agile pilot team in 2001. One of my most striking memories of 

that team was the sheer amount of energy we spent staring at our velocity measurements, 
trying to make them look better. Looking back, it reminds me of the kid who spends more 
time figuring out how to avoid doing his homework than it would take to simply do it. Still, 
it absolutely seemed like the right thing to do at the time, mostly because of distorted 
priorities.

Remember that this was 2001. Then, the ideas in agile software development were 
largely discounted out of hand. Here were three people who believed in extreme 
programming, trying to help it catch on at a company, so not only would we be able to 
practice it there, but, we hoped, we would be able to persuade other companies to do the 
same. We wanted to create a local market for XP or agile software development skill, so we 
would always be swimming in opportunities to do XP. Our mistake was letting that goal 
interfere with a more important objective: delivering the system we were charged to 
deliver.

Before you wake up one morning and realize you’ve wasted months chasing numbers, 
be aware of some warning signs that your obsession with velocity is getting in the way of 
your project.

“We’re not getting any faster...” The more you hear this, the more trouble you’re in. 
There is a common misconception that going agile means we’ll go faster, as though 
perhaps we’ll become better typists or faster readers. One of the principles of agile software 
development is the idea that we should avoid waste—”maximizing the amount of work not 
done”. One of the ways agile hopes to achieve this is to deliver early those features with the 
most positive impact on the business, then stop after we have delivered enough. If your 
velocity curve trends upward from iteration to iteration, that’s often a favorable result, but I 
don’t believe it should ever be the goal.

FIVE MISTAKES

FOCUSING ON VELOCITY
If you just do the same things, 
only faster, then you’re missing 
the point.

FOLLOWING THE EASY 
RULES
If it doesn’t hurt, then you’re 
probably not changing enough.

CHOOSING A CRITICAL 
PROJECT
If failure is not an option, then 
learning can never happen.

HOLDING PEOPLE 
HOSTAGE
It has to at least be “my way or 
the highway”, not just “my way”.

IGNORING TEAMWORK 
SKILLS
Lingering communication 
problems will limit your 
improvement.



J. B. RAINSBERGER
 SPRING 2008

EMERGING TECHNOLOGY FOR THE ENTERPRISE CONFERENCE IN PHILADELPHIA	 March 27, 2008

Your reaction to a “slow iteration”. How do people react 
when you under-deliver for an iteration? I understand being 
disappointed, but do heads roll? Do stakeholders tell you to “go 
faster”? Do you set a new velocity target that helps you get your 
average velocity back to its previous level? I’ve seen them all 
happen, and they tend to be destructive, not constructive. A team 
needs to deliver on its commitments regularly to build trust within 
itself and with the rest of the organization, and merely telling them 
to go faster (as if they were intentionally holding back) does not 
seem to help. The most sensible approach I’ve seen to date consists 
of examining why the team under-delivered, then lowering its 
commitment for the next iteration. It’s important to do both.

If we analyze why we under-delivered without changing our 
commitments, then we pretend that we can intentionally catch up 
later. On the contrary, such teams tend to see velocity spiral 
downward as they desperately try to catch up, cut more corners, 
then suddenly—and quite spectacularly—implode. It’s not pretty.

On the other hand, if we lower our commitment without 
analyzing our drop in velocity, we send the message to our 
stakeholders that they serve at the pleasure of the development 
team. Not only is this pure fantasy, but it doesn’t help: it’s the 
express lane to a canceled project, or worse.

So when you have an off iteration, I recommend you be firm in 
telling the stakeholders that you need to commit to less, but that 
you also show those stakeholders how serious you are about 
improving, by sharing your root-cause analysis and outlining how 
you plan to avoid those mistakes in the future.

There are more warning signs to look out for, but I have to 
stop somewhere, so here is a short list to help you out: long 
discussions after work about how to make velocity “look better”, 
proposals to multiply the estimation scale so the story point values 

look bigger, and a lack of debate in planning sessions about story 
estimates.

There is no agile checklist

Following only the easy rules
One of my favorite continuing misconceptions about agile is 

that we simply stop writing documentation and start writing code 
on day one. Now I imagine that you already know why that’s just 
not true, but that doesn’t stop otherwise well-meaning people 
from following only the easy rules—or practices—in the course of 
going agile. It’s only natural, and it’s a sign that the team sees agile 
as a set of rules, rather than an approach to delivering software.

Some organizations, to simplify things, characterize going 
agile as a goal in itself, rather than as part of a strategy to make 
particular organizational improvements. Now this attempt at 
simplifying things might be condescension to some and a welcome 
shield to others, but the results are the same: without 
understanding the goal of going agile, people will tend to see agile 
as a checklist they need to complete as part of their work. While 
this is already a problem, we make it worse when we let the team 
direct itself, because then the team gets to select which items 
going on the agile checklist. The result is fairly evident: the team 
will tend to only put those things on the list it feels it can handle, 
and won’t undertake those practices that face their key problems 
head-on. The most common case of this I have seen is eternal 
arguments about the meaning of done.

I have worked with a number of teams that start out with little 
or no control over delivering features to their customers. This 
happens most often in large organizations with a centralized 
delivery mechanism, sometimes called “the build team” or “the 
release team”, or both. In this environment, programmers especially 

TRY THIS AT WORK
START OFF ON THE RIGHT FOOT
Nothing we do can ever guarantee success, but there are 
a few key ingredients that I believe contribute to 
successful agile teams. Do as many of these as you can.

• create a brand new team to become the agile pilot 
team, rather than selecting an existing team to “go 
agile”

• give the new agile team thorough training in teamwork 
and communication along with agile development

• build a team that encompasses all the skills they need 
to deliver: business or domain knowledge, design and 
coding, testing, publishing features to production

• let the team decide when it needs to change 
personnel, and help them make those changes happen



J. B. RAINSBERGER
 SPRING 2008

EMERGING TECHNOLOGY FOR THE ENTERPRISE CONFERENCE IN PHILADELPHIA	 March 27, 2008

tend to see delivering features to real customers as someone else’s 
responsibility. Consequently, they find it easy to adopt test-driven 
development and to automate regression tests on their greenfield 
pilot project. The team learns how to write better stories and 
estimate more accurately, velocity looks good, internal demos to 
customer proxies go over well and everything appears to run 
smoothly until the first public release date comes into focus, then it 
all falls apart.

As the release team becomes more involved, we find out that 
the team hasn’t set up a reliable release mechanism. It has been 
cutting corners, doing just enough to build and run its internal 
demos each iteration. As word surfaces that the team needs a few 
more weeks to be able to release to the public, there is an awful lot 
of discussion—usually some shouting—about “done”. Why aren’t 
the features done? We thought you said you were done! Why did 
you tell us they were done?! The immediate answer is that the team 
chose not to agree that “done” means that we can push a button to 
deliver the new features to real customers, but is the team entirely 
to blame? I don’t believe so. I’ve never seen a team willfully refuse 
to use a smooth-running software delivery mechanism.

I have seen a number of teams fall into this trap because they 
were unable to coordinate their work effectively with existing 
delivery mechanisms. There are a variety of causes, but the root 
cause appears to be that no-one wants to change the existing 
delivery mechanisms, even though they were likely developed by 
people who never imagined there would be a need to be able to 
produce a full production release, repeatably, in around 15 
minutes, on demand. To go agile, however, you need a feature 
delivery mechanism that works that smoothly, to enable the 
frequency and depth of integration that allows you to confidently 
state that a feature is really, truly done. With an objective measure 
of “done”, we can measure velocity meaningfully and use that 
information to guide the team effectively. Without it, and in spite of 
adopting a majority of the remaining practices, we realize only a 
fraction of the benefit of going agile.

There are other signs that your team is only following the easy 
rules. A reduction in defects without improvements in velocity, or 
customers rejecting features regularly during iteration demos, or 
walking out of retrospectives without a clear understanding of 
what the team will do differently in the upcoming iteration. If you 
notice your team doing these things, ask them whether they 
believe the practices are helping them reach their goals. It’s 
possible they’re just going through the motions.

Failure has to be an option
Choosing a critical project as your 
pilot

It makes sense, on the surface. You’ve decided to try going 
agile because your organization needs to be perform better. You 
need to really shake things up by doing something very different 
from your current practice, which is why you chose to go agile. To 
maximize the benefit, then, you want to go agile on a critical 
project, because that’s the most important project to improve—or, 
more likely, the one you can least afford to fail. Sadly, when 

organizations choose critical projects as their pilots, they create an 
environment in which failure is not an option. If you can’t fail, 
then you can’t learn, and going agile is all about learning.

One of the key underlying principles of agile software 
development is continual improvement, and we can’t improve 
without learning new techniques or adopting new mindsets. This 
means that we have to practice, and we can’t practice if we’re not 
allowed to fail. There are a number of different signs that a team is 
afraid to fail. You might hear any of these phrases pop up regularly 
in conversation.

“We deserve partial credit for that story.”
“I can’t estimate that story/I’m not starting until I see all the 

acceptance tests.”
“Our part of the story is done, so let’s count it as done.”
On the surface, these indicate a problem with story writing, or 

estimating, but I believe that in most cases, they point to the larger 
problem of being desperately afraid to fail. If failure were an option, 
then we wouldn’t be so concerned about these issues: we would 
accept the possibility that a story might go wrong and that we 
could recover from it, rather than trying to create a perfect world in 
which stories simply can’t go wrong. Remember that going agile 
means living with uncertainty by being prepared to adapt to 
situations as they change, and if you can’t fail, then you can’t go 
agile.

Sometimes, we just have to walk away

Holding people hostage
I have to admit that I don’t understand how workgroups form 

in most of the organizations I work with. More accurately, I don’t 
understand how the way most organizations form workgroups can 
possibly be effective, because it appears to me to be haphazard, or 
purely politically motivated. I can’t tell the difference, but I do feel 
the results: I am often asked to help a workgroup “go agile” even 
though the people involved are unwilling, even incapable, of 
working as a team.

Now I’ve chosen the words “group” and “team” here quite 
intentionally. The key difference is that a team works together 
towards a common goal, whereas a group works near each other 
on similar tasks. I routinely see organizations try to take a 
seemingly random workgroup and have it “go agile”, forgetting that 
going agile requires teams and not just groups of people. The good 
news is that the group usually realizes early on that the goals of 
agile software development compel them to begin to work as a 
team. The bad news is that the average random group of people 
won’t work as a team, no matter how much we try to make it 
happen. Time and again, I see would-be agile “teams” run 
roughshod over one person in the group in their misguided 
attempt to form into a team. Sometimes you just need to let that 
person go.

I recognize that your organization is probably neither 
prepared nor well-suited to accommodating your need to move a 
person off the team, but that merely explains why it’s a common 
mistake. If letting a person move from team to team is a sensitive 
issue in your organization, then you need to make people 



J. B. RAINSBERGER
 SPRING 2008

EMERGING TECHNOLOGY FOR THE ENTERPRISE CONFERENCE IN PHILADELPHIA	 March 27, 2008

comfortable with the idea before starting 
your first pilot, because significant change 
usually causes at least one person to feel 
sufficiently out of place to need to move. I 
would go so far as to say that if that 
doesn’t happen, then you might not be 
changing enough.

It’s all about people

Ignoring teamwork 
skills

I have yet to work with an 
organization that understands that going 
agile likely means emphasizing teamwork 
in a way they’ve never emphasized before. 
Commonly such organizations have 
workgroups, and not teams, except in 
those fortunate cases where true teams 
spontaneously formed. Until recently, I 
thought that teams formed magically, a 
mysterious process called “jelling”. This 
meant that my agile transitions tended to 
succeed or fail to the extent that I 
happened to work with people who did or 
didn’t already work well as a team. When I 
realized this, it so struck me that I 
immediately began writing an open letter 
to apologize for my entire coaching career. 
I had committed perhaps the greatest 
mistake of all: I forgot that I was coaching 
people and not feature-delivering 
machines.

I try not to get too down on myself 
for this, though, because I simply didn’t 
know at the time that it was possible to 
understand how groups of people 
become teams. You might be in a similar 
position, and if you are, then in spite of 
your most sincere effort, your group might 
fail miserably in its attempt to go agile, 
because it simply cannot work as a team. 
That’s why it’s so important to include 
developing teamwork skills in your plan to 
go agile.

If you know how to help groups jell 
into teams, then you’re well on your way: 
teach your agile pilot group everything 
you know, starting from day one. They 
might resist it, but they’ll be more 
successful and happier in the long run if 
you stick with it. If you don’t know what to 
do, consult Patrick Lencioni’s excellent 
work The Five Dysfunctions of a Team, 
which describes a model of five obstacles 

to effective teamwork as well as how to 
begin to overcome them. Buy copies for 
your entire team and devote some time to 
working through the book together. There 
is no single book outside the overtly agile 

canon that I recommend more highly than 
this one. Even if you’re the only one to 
read it, you can nudge the group in the 
right direction when you notice them 
avoiding conflict or showing a lack of 
trust.

I’ve seen teams make more mistakes 
than these five, and by no means are they 
the most common mistakes or the worst 
mistakes. They are mistakes that stick out 
in my head or one reason or another, and 
frankly, I had to stop somewhere to avoid 
this becoming a book. Looking back at 
this list of mistakes new agile teams make, 
I believe that if you heed their warnings 
and learn the lessons they try to teach, 
that that will help you handle most of the 
other obstacles that will pop up as you 
learn to go agile.

Best of luck, and have fun.

J. B. (Joe) Rainsberger helps 
software organizations better satisfy 
their customers and the businesses 
they support. Expert at delivering 
successful software, he writes, 
teaches and speaks about why 
delivering better software is 
important, but not enough. He helps 
clients improve their bottom line by 
coaching teams as well as leading 
change programs. He helps software 
organizations off the treadmill of 
over-commitment and under-
delivery, addressing all aspects of 
software delivery including 
understanding the business, gelling 
the team and even writing great 
code. Learn more about how Joe will 
inspire your software organization at 
jbrains.ca, in his IEEE Software 
magazine column "Not Just Coding", 
at conferences worldwide, or by 
writing him directly at 
get.started@jbrains.ca.

RESOURCES
Patrick Lencioni, The Five Dysfunctions 
of a Team

Kent Beck and Cynthia Andres, 
Extreme Programming Explained: 
Embrace Change (2nd edition)

Ron Jeffries, Chet Hendrickson and 
Ann Anderson, Extreme Programming 
Installed

Alistair Cockburn, Agile Software 
Development: The Cooperative Game 
(2nd edition)

James Shore and Shane Warden, The 
Art of Agile Development

Venkat Subramaniam and Andy Hunt, 
Practices of an Agile Developer: Working 
in the Real World

Esther Derby and Diana Larsen, Agile 
Retrospectives: Making Good Teams 
Great

Mary and Tom Poppendieck, 
Implementing Lean Software 
Development: From Concept to Cash


