
A Code Walk-Through
of the

Source Behind respond_to

Andrea O. K. Wright, Chariot Solutions
aok@chariotsolutions.com

1

This talk is about the respond_to mechanism, which makes it easy to support multiple return types for the same
action. I will cover how to use respond_to, but the focus of this talk is how respond_to works.

mailto:aok@chariotsolutions.com
mailto:aok@chariotsolutions.com

One Action, Multiple Response Formats
def show
 @train_station = TrainStation.find(params[:id])
 respond_to do |format|
 format.html
 format.xml { render :xml => @train_station.to_xml }
 end
end

2

2

This is a basic Rails Controller “show” action. It provides details about a train station. What the part in red -- the
respond_to block -- indicates is that....

One Action, Multiple Response Formats
def show
 @train_station = TrainStation.find(params[:id])
 respond_to do |format|
 format.html
 format.xml { render :xml => @train_station.to_xml }
 end
end

Station Drawing from http://www.rrhistorical.com 3

If the client wants HTML, respond with HTML.

3

if the response format the client wants is HTML -- the train station details, like the address and phone number,
should be rendered on a Web page. Here the URL mapped to the show action was entered while browsing with
Firefox.

And if the response format the client want is XML...

http://www.rrhistorical.com
http://www.rrhistorical.com

One Action, Multiple Response Formats
def show
 @train_station = TrainStation.find(params[:id])
 respond_to do |format|
 format.html
 format.xml { render :xml => @train_station.to_xml }
 end
end

Station Drawing from http://www.rrhistorical.com

If the client wants XML, respond with XML.

irb> Net::HTTP.start('localhost',3000) do |http|
irb* puts http.get('/train_stations/1/’,
 'Accept'=>'application/xml').body
irb> end

<?xml version="1.0" encoding="UTF-8"?>
<train-station>
 <city>ABCTown</city>
 <id type="integer">1</id>
 <name>ABC Station</name>
 <state>MD</state>
 <station-master>Joe Doe</station-master>
 <street>3345 Redline Way</street>
 <zip>33234</zip>
 <phone>(332)334-3342</phone>
</train-station>

4

If the client wants HTML, respond with HTML.

4

...an XML representation of the train station should be provided. Here the request was issued in an interactive
Ruby session, an irb session, using the Ruby Net::HTTP library. The Accept header is programatically set to be
“application\xml”. The response shown here is the output from calling to_xml on a TrainStation instance.

http://www.rrhistorical.com
http://www.rrhistorical.com

Graceful Degradation with respond_to
def create
 @ticket = Ticket.new(params)
 ticket.save
 respond_to do |format|
 format.html {redirect_to ticket_url(@ticket)}
 format.js
 end
end

JavaScript

5Conductor drawing from http://www.rrhistorical.com

HTML

5

The respond_to mechanism can also play a part in ensuring that an Ajax-enabled web app will degrade gracefully
when accessed with a browser that does not support Javascript or if the browser is set to block JavaScript.
Here's a simple ticketing page: you type in the ticket price and hit the submit button.

If the browser is open to Javascipt, the create.rjs template is invoked. It includes JavaScript to replace the input
field with plain text that represents the ticket value and then ...

http://www.rrhistorical.com
http://www.rrhistorical.com

Graceful Degradation with respond_to
def create
 @ticket = Ticket.new(params)
 ticket.save
 respond_to do |format|
 format.html {redirect_to ticket_url(@ticket)}
 format.js
 end
end

JavaScript

6Conductor drawing from http://www.rrhistorical.com

HTML

6

temporarily highlights the text in yellow ...

http://www.rrhistorical.com
http://www.rrhistorical.com

Graceful Degradation with respond_to
def create
 @ticket = Ticket.new(params)
 ticket.save
 respond_to do |format|
 format.html {redirect_to ticket_url(@ticket)}
 format.js
 end
end

JavaScript

7Conductor drawing from http://www.rrhistorical.com

HTML

7

...to give the user clear feedback that the transaction was processed.

If the client is JavaScript-challenged, the user will be redirected to a page that ...

http://www.rrhistorical.com
http://www.rrhistorical.com

Graceful Degradation with respond_to
def create
 @ticket = Ticket.new(params)
 ticket.save
 respond_to do |format|
 format.html {redirect_to ticket_url(@ticket)}
 format.js
 end
end

JavaScript

8Conductor drawing from http://www.rrhistorical.com

HTML

8

...displays the ticket value as plain text.

http://www.rrhistorical.com
http://www.rrhistorical.com

Graceful Degradation with respond_to
def create
 @ticket = Ticket.new(params)
 ticket.save
 respond_to do |format|
 format.html {redirect_to ticket_url(@ticket)}
 format.js
 end
end

JavaScript

9Conductor drawing from http://www.rrhistorical.com

HTML

#show.rhtml
<h1>E-Conductor: E-Ticketing</h1>

<%= render :partial=>'ticket'%>

#create.rjs
page["enter_fare"].replace_html render :partial => "ticket"
page["enter_fare"].visual_effect :highlight

9

Here is the code in the rjs template that replaces the input field and highlights the fare, as well as the code for the
page invoked by the redirect. They both use the same partial to display the fare. So between that partial and the
respond_to block, a nice chunk of View and Controller code can be used regardless of whether JavaScript is
enabled or supported.

http://www.rrhistorical.com
http://www.rrhistorical.com

Error Handling with respond_to

 def create
 @ticket = Ticket.new(params[:ticket])
 respond_to do |format|
 if @ticket.save
 flash[:notice] = 'Ticket was successfully created.'
 format.html { redirect_to account_url(@ticket) }
 format.xml { head :created, :location => ticket_url(@ticket) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @ticket.errors.to_xml }
 end
 end
 end

10

10

I omitted error handling from the rest of my slides to conserve time and space, but this slide shows how
respond_to can be used to ensure that error messages are delivered in an appropriate format. If there's an error
when you try to save your ticket, the form for entering a new ticket is redisplayed (if the client had requested
HTML) -- while the errors will be returned to the caller in XML format if the client is expecting an XML response.

Agenda

1. What does respond_to do?
2. Determining what format the client “wants”
3. Proper care and feeding of respond_to

 Default formats and extensions
 HTML, JavaScript, XML...

 Custom formats and extensions
 images, voice, Easter eggs

4. Preview of Ruby features, operators and idioms
 that are used to implement respond_to
5. Walk through the respond_to source

11

11

I just talked about what respond_to does. In short order I’ll go over how Rails determines what the
client “wants” and how to use respond_to in conjunction with the standard View templates that are
packaged with Rails.

I will also cover custom formats, like jpegs and pngs. There was a presentation at RailsConf about
using respond_to to support a custom voice MIME type. When I talk about custom extensions, I’m
going to talk about how you can use respond_to to embed an Easter egg in an Rails app.

Easter Eggs?

12

12

You know, Easter eggs -- undocumented features in software that are usually whimsical.

Easter Eggs?

aok@debian:~$ apt-get moo

13

13

One of my favorite Easter eggs is implemented in a several Linux distributions. When you type “apt-get
moo” at the command line...

Easter Eggs?

 (__)
 /------(oo)
 / | || \/
 * /\---/\
 ~~ ~~
....Have you mooed today?...

aok@debian:~$ apt-get moo

14

14

...you get to see this nice ASCII art cow and this phrase.

15

http://localhost:3000/tickets/1.egg

egg-
ste

ntio
n

15

I’m going to demonstrate how you can modify the show action we looked at when I began this
presentation -- so that when the user enters an “egg” -- “egg-stention” ...

 |=========|
 __[]__ _ _______/
+================+ /______\ __(_)__ () _____/ ()
 `-+ +-----+---+ | |------| /_______\ /__\ | | +======+
 | | | | +-+------+-. |=======| <____> | | || ||
 | | | | |o _|___ __|__//__|___|_+======+
 | +=========+ |o o||=+
 | * * |o o||||
 | --%-- |o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o||=+
 +=====================================+-----------+====+
 |==/ ------ \=====/ ------ \===%--||o o||____
 // \ L_/_____//___L_/___/ %=||o~~~~~~~~o||===_____
 ||__ /. ___________ . ______/ +==============+ \ _
 || __/ || || __/ || //--\\ //--\\\\ \ \ _
 \\ / || \ // \\ / || \ // ((<>))((<>))____\\\\
 \========/ \========/ ____/ ____/ `-----------+
andre dziedzic - targi@angelone.line.org

16ASCII art from http://www.ascii-art.de

http://localhost:3000/tickets/1.egg

egg-
ste

ntio
n

16

...this ASCII art train appears.

I did not create this train, but the URL where I found it is on the lower right corner of this slide.

mailto:targi@angelone.line.org
mailto:targi@angelone.line.org
http://www.ascii-art.de
http://www.ascii-art.de

Agenda

1. What does respond_to do?
2. Determining what format the client “wants”
3. Proper care and feeding of respond_to

 Default formats and extensions
 HTML, Javascript, XML...

 Custom formats and extensions
 images, voice, Easter eggs

4. Preview of Ruby features, operators and idioms
 that are used to implement respond_to
5. Walk through the respond_to source

17

17

After custom formats, I will go over some of the Ruby syntax and operators that appear in the
respond_to source in order to make the actual walk-through go more smoothly.

Then we will walk through all of the respond_to source.

 Request URLs with Format Tacked On
http://localhost:3000/train_stations/1.xml

params[:format]== ”xml”

formatted_train_station_path(1, :xml)

generates /train_stations/1.xml

Determining What the Client “Wants”

18

18

How does the app know what the client wants?

Rails provides support for specifying the preferred response format by tacking it onto the request URL. This slide
shows the URL mapped to show for a TrainStationsController -- with an .xml extension tacked on. When Rails
processes a request like this, a key\value pair is deposited in the params hash accessible to the Controller with
format as the key and the extension, in this case, “xml”, as the value.

There is a family of dynamic methods, prefixed with “formatted”, that generate paths that specify format in this
way.

 Request URLs with Format Tacked On
http://localhost:3000/train_stations/1.xml

params[:format]== ”xml”

formatted_train_station_path(1, :xml)

generates /train_stations/1.xml

 Format Can Be Passed as a Parameter
http://localhost:3000/train_stations/1?format=xml

Determining What the Client “Wants”

19

19

Format can also be passed as a parameter in the traditional manner.

http://localhost:3000/train_stations/1&format=xml
http://localhost:3000/train_stations/1&format=xml

 Request URLs with Format Tacked On
http://localhost:3000/train_stations/1.xml

params[:format]== ”xml”

formatted_train_station_path(1, :xml)

generates /train_stations/1.xml

 Format Can Be Passed as a Parameter
http://localhost:3000/train_stations/1?format=xml

 Inspecting the Request Accept Header
text/javascript, text/html, application/xml, text/xml, */*

Determining What the Client “Wants”

20

20

If there's no format parameter in the params Hash, Rails then inspects the Accept header. If more than one type
is specified in the Accept header, Rails determines which one should be given priority using rules based on the
HTTP spec. The Accept header shown here is used by the Prototype JavaScript library when it issues an Ajax
request. If no Accept header is provided, or if the header is “*/*” (which is what Safari provides), Rails goes with
whatever format is referenced first in the respond_to block.

http://localhost:3000/train_stations/1&format=xml
http://localhost:3000/train_stations/1&format=xml

Specifying Which Formats the Server Supports
 def show
 @train_station = TrainStation.find(params[:id])
 respond_to do |format|
 format.html
 format.xml { render :xml => @train_station.to_xml }
 format.rss { render :action => "rss.rxml" }
 format.atom { render :action => "atom.rxml" }
 end
 end

respond_to If the client
“wants”...

In the respond_to
block ...

Respond by...

Default formats:
Default behavior

HTML
XML

JavaScript

format.html
format.xml
format.js

render [action].rhtml
render [action].rxml
render [action].rjs

Default formats:
Custom behavior HTML format.html {block} call {block}

Custom formats:
Custom behavior

RSS format.rss {block} call {block}

21

21

Its pretty easy to tell how to use respond_to just by looking at examples, but I want to go over the rules briefly.
This slide shows how to use respond_to to specify which response formats a Controller action supports and also
what code should be executed when the client requests a particular format.

In the first row, I refer to to HTML, XML and JavaScript as default formats because Rails provides default
handling for each of them. Rails is packaged with corresponding view templates for each of these formats (rhtml
for html, rxml for xml and rjs for JavaScript), and the default handling for each of these formats is to render a
template with the corresponding template extension and a base filename that matches the name of the action.
So, the statement “format.html” in the sample respond_to block on this slide indicates that if the client requests
HTML, the show.rhtml template in the train_stations directory should be rendered. To override the default logic
with custom logic for one of the default formats, supply a block that contains that custom logic. Based on the
respond to block in this example, the application would not render an rxml template if the client requests XML --
but instead would return the output from calling to_xml on the TrainStation instance. The syntax for custom
formats mirrors the syntax for default formats linked to custom actions. You need a statement in the respond_to
block to represent the custom format and you need to provide a block with the custom logic.

Custom Extensions & Formats: Easter Eggs

Mime::Type.register “easter_egg”, :egg, %w(undocumented/whimsy)
22

def show
 @train_station = TrainStation.find(:all)
 respond_to do |format|
 format.html
 format.xml { render :xml => @train_station.to_xml }
 format.egg { render_and_stream_train }
 end
 end

 def render_and_stream_train

 ascii_train = " _________ \n" +
 " |=========| \n" +
 " __[]__ _ _______/ \n" +
 "+================+/______\\ __(_)__ () _____/ () \n" +
 "`-+ +-----+---+ | |------| /_______\\ /__\\ | | +======+ \n" +
 " | | | | +-+------+-. |=======| <____> | | || || \n" +
 " | | | | |o _|___ __|__//__|___|_+======+ \n" +
 " | +=========+ |o o||=+ \n" +
 " | * * |o o|||| \n" +
 " | --%-- |o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o||=+ \n" +
 " +=====================================+-----------+====+ \n" +
 " |==/ ------ \\=====/ ------ \\===%--||o o||____ \n" +
 " // \\ L_/_____//___L_/___/ %=||o~~~~~~~~o||===_____ \n" +
 " ||__ /. ___________ . ______/ +==============+ \\ _ \n" +
 " || __/ || || __/ || //--\\\\ //--\\\\\\\\ \\ \\ _ \n" +
 " \\\\ / || \\ // \\\\ / || \\ // ((<>))((<>))____\\\\\\\\ \n" +
 " \\========/ \\========/ ____/ ____/ `-----------+ \n" +
 “ andre dziedzic - targi@angelone.line.org “

 send_data ascii_train,:type=>'text\plain',:disposition=>'inline’
 end

format.egg { render_and_stream_train }

22

Using some custom formats requires the additional step of registering the custom type in
environment.rb. Although Rails only provides default handling for 3 formats (HTML, XML and
JavaScript), there are pre-defined Mime::Type constants in the Rails core source for numerous other
formats -- including ical, rss, atom, and text. Image types need to be registered. Because, not
surprisingly, there is no pre-defined MIME::Type constant for Easter eggs, I needed to add this one-
liner to environmet.rb in order to implement my Easter egg. We'll look at the source code for
Mime::Type.register later. For now, you can see that I needed to supply it with a name, a symbol for
the extension, and any synonyms I want Rails to know about.

Here is the show action we looked at when I started the presentation -- modified to support an Easter
egg. The line highlighted in red indicates that if the client is interested in the Easter egg, the
render_and_stream_train method should be invoked. As you can see, that deposits the ASCII characters
that constitute the train into a String variable and passes that to send_data to stream it out to the
client.

To support an image-based representation of a TrainStation, I would need to register my image type,
png, for example. I would need to add “format.png” to the respond_to block, along with a block that
takes care of rendering the image, perhaps leveraging send_data.

mailto:targi@angelone.line.org
mailto:targi@angelone.line.org

The Spaceship Operator: <=>

class SpaceInvader

 attr_accessor(:name,:value)

 def initialize(name,value)
 @name = name
 @value=value
 end

 def <=>(other)
 value <=> other.value
 end

 def to_s
 name
 end

end

Space Invaders graphic: www.neave.com 23

23

Now we’re getting into the part of the presentation that previews some of the Ruby operators we will encounter in
the respond_to source.

The <=> operator, commonly referred to as the spaceship operator, is used to customize sort order. By default
when you call sort on an Array of numbers, the numbers are ordered in ascending order. But let's say you wanted
the numbers to represent playing cards. You might want "1" to represent an ace. You could override the
spaceship operator for your card class to specify that 1 should be considered greater than all the other numbers
when sorting.

This code shows the definition of a simple SpaceInvader class for a video game. Each SpaceInvader has a name
and a point value (how many points you get when you hit it with a piping symbol you launched). Here the
spaceship operator is overridden to specify that sort order should be based on point value ascending.

http://www.neave.com
http://www.neave.com

The Spaceship Operator: <=>

class SpaceInvader

 attr_accessor(:name,:value)

 def initialize(name,value)
 @name = name
 @value=value
 end

 def <=>(other)
 value <=> other.value
 end

 def to_s
 name
 end

end

Space Invaders graphic: www.neave.com 24

def <=>(other)
 other.name <=> name
end

24

Here is the same class with the spaceship operator overridden to base sort order on name in reverse alphabetical
order.

http://www.neave.com
http://www.neave.com

The “Threequal” Operator: ===

class Person

 def initialize(name)
 @name = name
 end

 def ===(other)
 if (other.name == name)
 return true
 end
 super
 end

 attr_accessor :name

end

class Cat

 def initialize(name)
 @name = name
 end

 def ===(other)
 if (other.name == name)
 return true
 end
 super
 end

 attr_accessor :name

end

25

25

The === operator is commonly referred to as the threequal operator. It's the operator that Ruby
consults when evaluating the “when” clause of a case statement. By default, it returns the same value
as the == operator.

Since we'll be looking at Ruby and Rails features that are sometimes referred to as magical , I thought
it would be fitting to look at some code examples based on the Harry Potter series. This is the first of
these.

Professor McGonagall teaches transfiguration at the Hogwarts Academy of Witchcraft and Wizardry.
Transfiguration is the art of changing something into something else. One of the most difficult kinds
of transfiguration to master is turning a person into an animal -- and Professor McGonagall has been
know to turn herself into a cat.

Normally one would not say that a person == (is equal to) to a cat, but here threequal operator is
overridden for the Person class (which support a name property) and the Cat class (which also
supports a name property) -- so that a Person and a Cat are considered threequal if they answer to the
same name.

The “Threequal” Operator: ===

cat_on_privet_drive = Cat.new(“Professor McGonagall”)

=> The cat is Professor McGonagall.

26

case cat_on_privet_drive
 when PROFESSOR_MCGONAGALL
 puts "The cat is Professor McGonagall"
 default
 puts "The cat is a garden-variety cat."
end

=> true

PROFESSOR_MCGONAGALL = Person.new(“Professor McGonagall”)

cat_on_privet_drive === PROFESSOR_MCGONAGALL

26

The constant in the first line here represents Professor McGonagall. The next line represents her
turning herself into a cat. The variable is called "cat_on_privet_drive" because when Professor
McGonagall is first introduced in the first chapter of the first Harry Potter book, she is in cat form
outside the house on Privet Drive where Harry's uncle, aunt and cousin live.

When Professor Dumbledore, the headermaster at Hogwarts, famously addresses the cat as "Professor
McGonagall", he is basically asserting that the cat and Professor McGonagall are threequal.

In the alternative, he could have used a case statement like the one shown here. Since the case
statement defers to the === operator , the first “when” clause would evaluate to true.

Being Able to Grok Blocks & Procs

{ puts “All aboard!” }

{ puts “All aboard!”; puts “Watch your step!” }

Some Blocks

do
 puts “All aboard!”
 puts “Watch your step!”
end

Using the “Just Do It” Syntax

27

27

It’s important to have some familiarity with blocks and Procs to understand how respond_to works.

A block is comprised of one or more statements, which can be grouped using either curly braces or the
“do” and “end” keywords. Maybe it’s just me, but for some reason, I had a block against the “Just Do
It” (do\end) syntax when I first started learning Ruby. Maybe it’s because it’s structurally so similar to
do\while loops in some other languages (there is no do\while loop in Ruby).

The middle box and the bottom box both contain the same statements, using different syntax.

Being Able to Grok Blocks & Procs

Blocks Can’t Run on Their Own

{ puts “All aboard!”; puts “Watch your step!” }

=> SyntaxError: compile error
(irb):1: syntax error, unexpected tSTRING_BEG, expecting kDO
or '{' or '('
{ puts "All aboard!"; puts "Watch your step!" }
 ^
(irb):1: syntax error, unexpected '}', expecting $end
 from (irb):1
irb(main):002:0>

28

28

A block is not a valid statement on its own. If you enter a block at the prompt during an interactive
Ruby session, you will see an error like the one shown here in the box with a dotted outline.

def method_that_yields
 yield
end

method_that_yields { puts “All aboard!”; puts “Step right up!” }

method_that_yields do
 puts “All aboard”
 puts “Step right up!”
end

=> All aboard!
 Step right up!
 All aboard!
 Stop right up!

Being Able to Grok Blocks & Procs

Yielding to a Block

29

29

So how can you invoke the logic in a block?

One way is to pass the block to a method that yields. You can actually pass a block to any method --
regardless of whether a block is specified in its signature. If the block contains a yield statement --
the block you passed in will be triggered by the yield.

This slide shows what it looks like when a block is passed to method_that_yields using the curly braces
syntax and also using the do\end syntax. The output from the two method calls is shown in the box
with a dashed border.

Being Able to Grok Blocks & Procs
Passing Argument(s) to a Block

30

def my_method(stop)
 puts stop.upcase
end

30

Before we look at the syntax for passing an argument to a block, I wanted to take a look a the familiar
syntax for passing an argument to a method. This method outputs the name of station stop passed to
it in capital letters. You can count on a conductor to shout out the name of a station as the train
approaches it, and capitalizing is the lexigraphical equivalent of shouting.

Arguments are enclosed in parentheses in a method signature.

do |stop|
 puts stop.upcase
end

{ |stop| puts stop.upcase }

Being Able to Grok Blocks & Procs
Passing Argument(s) to a Block

31

def my_method(stop)
 puts stop.upcase
end

31

Here are a couple of blocks that perform the same function as my_method. You specify the name of a
block argument by placing it between 2 piping symbols, instead of using a pair of parentheses. You
use the piping symbol goal posts regardless of whether you use the “do\end” delimiters or the curly
braces.

do |stop|
 puts stop.upcase
end

{ |stop| puts stop.upcase }

Being Able to Grok Blocks & Procs
Passing Argument(s) to a Block

32

def red_line_train_ride
 stations = [“Woodley Park”, “National Zoo”, “Dupont Circle”]
 for station in stations
 yield station

 end
end

red_line_train_ride do |stop|
 puts stop.upcase
end

=> WOODLEY PARK
 NATIONAL ZOO
 DUPONT CIRCLE

def my_method(stop)
 puts stop.upcase
end

yield stationyield(station)

32

When a block takes one or more arguments, you pass them to yield, which in turn passes them to the
block.

Here we pass our block that shouts out train stops to red_line_train_ride, a brief programmatic ride on
the Washington, DC’s Metroliner. The logic loops through an Array of station stop names, passing
each to yield, which passes them on them to the block.

The box with the dashed border shows the output.

Being Able to Grok Blocks & Procs

Binding Blocks to Variables

33

yell = { |station_name| puts station_name.upcase }

A Block Can’t Be Bound to a Variable “As Is”

33

An unadorned block can’t be assigned to a variable.

Being Able to Grok Blocks & Procs

Binding Blocks to Variables

34

yell = { |station_name| puts station_name.upcase }

A Block Can’t Be Bound to a Variable “As Is”yell = lambda { |stop| puts stop.upcase }
shout = Proc.new { |stop| puts stop.upcase }

yell.call(“Dupont Circle”)

shout.call “Woodley Park”

=> DUPONT CIRCLE
 WOODLEY PARK

34

If you want a named reference for the logic that constitutes a block -- the block needs to be turned
into a Proc. Passing the block to Proc.new or lambda will turn it into a Proc. Calling “call” on a Proc
invokes the logic in its underlying block.

There are some differences between using Proc.new and lambda. If Proc.new was used, a return
statement encountered in a block will boot the logic flow out of the enclosing method -- while if
lambda had been used program execution would return to the code following the block invocation.
You also get stricter arity checking with lambda. With Proc.new Ruby will not ensure that the number
of arguments passed to call matches the number of arguments in the block definition.

Just as you can’t assign a block to a variable directly, you can’t add a block to an Array or a Hash. You
can, however, store Procs in Arrays and Hashes.

def method_that_calls(&block_to_call)
 block_to_call.call
end

method_that_calls { puts “All aboard!”; puts “Step right up!” }

method_that_calls do
 puts “All aboard”
 puts “Step right up!”
end

=> All aboard!
 Step right up!
 All aboard!
 Step right up!

Being Able to Grok Blocks & Procs

Calling “call” on a Block You Call Something

35

35

You can also refer to a block by name if you include it in the argument list for a method. It should
always be the last argument in the argument list, and it needs to be prefixed with an ampersand.

When a block is passed to a method in this manner, it becomes a Proc within the method, and you can
call “call” on it to invoke its logic.

Being Able to Grok Blocks & Procs
What’s in a Name?
respond_to do |format|
 format.html
 format.xml {render :xml => @train_station.to_xml}
end

36

respond_to do |wants|
 wants.html
 wants.xml {render :xml => @train_station.to_xml}
end

respond_to do |accepts|
 accepts.html
 accepts.xml {render :xml => @train_station.to_xml}
end

respond_to do |type|
 type.html
 type.xml {render :xml => @train_station.to_xml}
end

36

One of the reasons I included a number of slides showing how blocks are structured is to help orient
those who are new to Ruby. Another reason is that in preparation for looking at the respond_to
source, I wanted everyone to start thinking of respond_to in terms of passing blocks to methods and
passing arguments to blocks. I don’t think most developers, even experienced developers, think of
respond_to in those terms. I think that most developers think of respond_to as domain specific
language for handling response formats. You don’t look at a respond_to block and think “This
respond_to block takes one argument, called format. A method named ‘html’ is called on format. Then
‘xml’ is called on format, and a block is passed to the ‘xml’ method”.

In actual fact the respond_to block is not so different from the blocks we have been looking at. The
block argument does not have to be called ‘format’. It can be called anything and still be syntactically
correct. I’ve actually seen several different names for this argument. The RDoc for Rails and the
scaffold_resource generator uses ‘format’. The Pragmatic Rails book uses ‘accepts’. In one of his early
blog entries about respond_to, DHH used ‘type’. I have seen ‘wants’ on a few blogs. Which of these do
you think works best for a return format DSL?

hermione=387072000

def the_recent_past(&time_turner)
 hermione=387064800
 puts "Hermione in the recent past: #{hermione}."
 traveller_hermione = eval("hermione", time_machine.binding)
 puts "Time travelling Hermione: #{traveller_hermione}."
end

the_recent_past {puts “This is a time turner.”}

Being Able to Grok Blocks & Procs
Blocks Are Closures

37

37

Closures are language constructs that link logic with the environment or the application state. Because a block is
a closure, it is linked to the bindings for all the variables that were in scope at the time the block was defined.
There are Ruby functions you can use to interrogate a block to find out the value of any variable that existed at
the time the block was declared, regardless of whether it is referred in any of the statements that constitute the
block.

I’ll use another Harry Potter example to show how closures can be used. There's a student who goes to school
with Harry named Hermione Granger, who is a top student and wants to take all of the classes that are offered --
even those that are scheduled at the same time. So Headmaster Dumbledore obliges by giving her a device
called a time turner that allows her to go back in time. Let's say transfiguraton and potions are both scheduled
from 10 AM unto noon on Mondays. She can go to transfiguration class. When it is over at noon, she can use the
time turner to go back a couple of hours. She can then go to potions class.

This code expresses her time travel routine programatically. The first line defines 'hermione'. She a little more
than 12 years old -- in seconds. The method the_recent_past, which takes a block called 'time turner' , serves to
take Hermione back in time. If you do the math, you can see that the local 'hermione' in the_recent_past is two
hours younger than the 'hermione' at the present time, defined on the top line. The eval call is where the magic
happens. It's what enables us to access the time-traveling 'hermione' from the present in the_recent_past.

hermione=387072000

def the_recent_past(&time_turner)
 hermione=387064800
 puts "Hermione in the recent past: #{hermione}."
 traveller_hermione = eval("hermione", time_machine.binding)
 puts "Time travelling Hermione: #{traveller_hermione}."
end

the_recent_past {puts “This is a time turner.”}

Being Able to Grok Blocks & Procs
Blocks Are Closures

38

hermione=387072000

def the_recent_past(&time_turner)
 hermione=387064800
 puts "Hermione in the recent past: #{hermione}."

 traveller_hermione =
 eval("hermione", time_turner.binding)

 puts "Time travelling Hermione: #{traveller_hermione}."
end

the_recent_past {puts “This is a time turner.”}

38

Let’s take a closer look at eval. You pass eval a String -- and eval treats that String like source code --
evaluating its return value by way of executing it. It literally turns words into action. It’s very powerful.
You can use Ruby’s many String manipulation methods to build a line or lines of code, and then run
that code using eval.

If you pass eval the variable bindings that are linked to a block (which you can access by simply calling
‘binding’ on the block), eval will use the variable assignments linked to to that block when it needs to
determine a variable value.

If you pass eval a variable name, it will return that value of that variable. And if you pass eval a variable
name and the bindings associated with a particular block -- it will return the value the variable had at
the time the block was defined.

In the last line, we actually send Hermione back in time, by calling the_recent_past and passing it a
block. The block simply prints out a line identifying it as a time turner. You can see that we are not
explicitly passing ‘hermione’ to the_recent_past. However, we can use eval to access the time-traveling
‘hermione’ of the present from within the_recent_past -- because the present-time ‘hermione’ is the
one that was in scope when we created a block to pass to the_recent_past.

hermione=387072000

def the_recent_past(&time_turner)
 hermione=387064800
 puts "Hermione in the recent past: #{hermione}."
 traveller_hermione = eval("hermione", time_machine.binding)
 puts "Time travelling Hermione: #{traveller_hermione}."
end

the_recent_past {puts “This is a time turner.”}

Being Able to Grok Blocks & Procs
Blocks Are Closures

=> Hermione in the recent past: 387064800.
 Time travelling Hermione: 387072000.

39

hermione=387072000

def the_recent_past(&time_turner)
 hermione=387064800
 puts "Hermione in the recent past: #{hermione}."

 traveller_hermione =
 eval("hermione", time_turner.binding)

 puts "Time travelling Hermione: #{traveller_hermione}."
end

the_recent_past {puts “This is a time turner.”}

39

When we run the code, the output from the diagnostic puts statements in the_recent_past show that
there are 2 distinct Hermiones in the realm of the_recent_past -- the local ‘hermione’ and the time-
traveling ‘hermione’.

Incidentally, One important time travel rule is that you have to be very careful not to run into your future self or
the consequences for your future can be devastating. Time traveling is a low risk prospect for Hermione because
she knows exactly where here future self was during the potions class time slot. All she has to do is avoid
transfiguration class.

def show
 respond_to do |format|
 format.html
 format.xml {:xml => @train_station.to_xml}
 format.egg { render_and_stream_train }
 end
end

Being Able to Grok Blocks & Procs

Blocks Are Closures

The binding for this block can provide access to the
response, the request and the params that its
enclosing Controller has access to.

40

40

Here’s a slightly more practical example. When we look at the respond_to source, we’ll see that the
variable bindings linked to the block passed to respond_to get passed to a class that needs to leverage
eval in order to inspect the params Hash and the request, and that also sets attributes on the
response.

Without Further Ado:
respond_to

41

41

def respond_to(*types, &block)

 raise ArgumentError, "respond_to takes either types or a block..."
 unless types.any? ^ block

 block ||= lambda {|responder|types.each {|type| responder.send(type)}}

 responder = Responder.new(block.binding)

 block.call(responder)

 responder.respond

end

The respond_to Source

from ActionController::MimeResponds::InstanceMethods

42

42

Here is the respond_to source in its entirety. In the slides that follow, the code snippets from this
method will be displayed with white text on a black background.

As you can see it take either *types or a block, although you rarely see examples of passing *types to
respond_to in articles, books or blogs.

The splat operator (*) in the “*types” indicates that any number of types can be passed to respond_to,
and that Ruby will automatically deposit them in an Array that can be referenced as “types”.

The first line of the method indicates that the method accepts either *types or a block, not both. The
caret (^) indicates an “exclusive or” condition. The expression evaluates to true if one, and only one, of
the two conditions is true -- not if either is true. So the ArgumentError will be raised unless only one
argument is supplied.

def respond_to(*types, &block)

 raise ArgumentError, "respond_to takes either types or a block..."
 unless types.any? ^ block

 block ||= lambda {|responder|types.each {|type| responder.send(type)}}

 responder = Responder.new(block.binding)

 block.call(responder)

 responder.respond

end

The respond_to Source

from ActionController::MimeResponds::InstanceMethods

43

43

So now we’re finished with the first line and can move on. The next line creates a block, based on
*types, if the caller supplied *types in lieu of a block. Once that block is defined, the logic is the same
regardless of whether *types or a block were supplied.

Note that regardless of whether “block” is supplied or populated with the code on the second line, it’s
actually a Proc -- despite being named “block”. As explained earlier, Ruby transforms a block into a
Proc when it is named in the method signature, and lambda returns a Proc. That being said, I’m going
to refer to “block” as a block throughout the rest of the presentation. I hope that does not offend
anyone’s sensibilities. For all intents and purposes, “block” is a block. You can access the variable
bindings it is linked to (calling “binding” on a Proc returns the variable bindings linked to its
underlying block) and you can invoke its logic. I’m also going to refer to the block called “block” as
“the respond_to block”.

Before we move on to the meat of respond_to, let’s take a quick look at an example Controller action
that passes *types to respond_to.

 block ||=
lambda {|responder| types.each {|type| responder.send(type)}}

Passing *types to respond_to:
Creating a block based on *types if one isn’t supplied

def show
 @train_station = TrainStation.find(params[:id])
 respond_to(:html, :xml)
end

44

responder.send(:html)
responder.send(:xml)

def show
 @train_station = TrainStation.find(params[:id])
 respond_to do |format|
 format.html
 format.xml
 end
end

types == [:html,:xml]

responder.html
responder.xml

44

In this sample show action, :html and :xml are passed to respond_to instead of a block. By virtue of the
splat operator (*), Ruby deposits these values in an Array called ‘types’. Rails populates the block
variable by creating a Proc via lambda. The block passed to lambda takes an argument named
“responder”. The block contains logic to loop through the types Array, calling “send” on “responder”
and passing “send” the type. Calling “send” with a method name as an argument is equivalent to
calling the method -- so “responder.send(:html)” is equivalent to “responder.html”.

As it turns out, the block that gets constructed when *types are supplied is functionally equivalent to
passing a block that references only default types and does not specify custom behavior for those
types. Passing *types is only a viable option if the action only supports default return types -- and can
use the default behavior for those formats.

The variable bindings associated with the block constructed if *types is supplied include params,
request, and response because Rails adds respond_to to ActionController via Ruby’s mixin mechanism.

def respond_to(*types, &block)

 raise ArgumentError, "respond_to takes either types or a block..."
 unless types.any? ^ block

 block ||= lambda {|responder|types.each {|type| responder.send(type)}}

 responder = Responder.new(block.binding)

 block.call(responder)

 responder.respond

end

The respond_to Source

from ActionController::MimeResponds::InstanceMethods

45

45

Now we’ve covered the first two lines and can move on to the third. Here, a Responder is created. Its
constructor takes the binding for the block that specifies which formats the action supports and
corresponding behavior for each action.

class Responder

 DEFAULT_BLOCKS = [:html, :js, :xml].inject({}) do |blocks, ext|
 ...# construct default blocks for rails standard templates
 end

 def initialize(block_binding)
 ...# determines which response type is preferred
 end

 def custom(mime_type, &block)
 ...# creates an array of responses that correspond to types
 end

 def method_missing(symbol, &block)
 ...# calls custom
 end

 def respond
 ...# send the client a response in the expected format
 end

end

 responder = Responder.new(block.binding)

Creating an ActionController::MimeResponds::Responder

46

46

Here is a skeletal version of the Responder class. The initialize method for Responder is where Rails
determines which response type the client wants.

 class Responder
 ...
 def initialize(block_binding)
 @block_binding = block_binding
 @mime_type_priority =
 eval(
 "(params[:format] && Mime::EXTENSION_LOOKUP[params[:format]]) ? " +
 "[Mime::EXTENSION_LOOKUP[params[:format]]] : request.accepts",
 block_binding
)
 @order = []
 @responses = {}
 end
 ...
end

Determining Which MIME Type Gets Priority
While Initializing the Responder

@mime_type_priority =
 eval(
 "(params[:format] && Mime::EXTENSION_LOOKUP[params[:format]]) ? " +
 "[Mime::EXTENSION_LOOKUP[params[:format]]] : request.accepts",
 block_binding
)

47

47

The @mime_type_priority instance variable represents the formats that the client will accept. Later on
we’ll see that @order represents the formats the Controller action supports, the keys in the
@responses Hash correspond to the formats the action supports, and the values in the @responses
Hash are Procs that contain the response logic for the supported formats.

Based on the ternary expression passed to eval -- the @mime_type_priority will be assigned the
Mime::EXTENSION_LOOKUP Hash value paired with the value of the format parameter -- if there is a
format value in the params Hash and if there is a value paired with that format in the
Mime::EXTENSION_LOOKUP Hash. Otherwise the value assigned to @mime_type_priority will be the
return value of request.accepts.

Note that a Responder has access to params and request by virtue of the binding passed to its
constructor.

Determining Which MIME Type Gets Priority
If params[:format] is supplied...

 [Mime::EXTENSION_LOOKUP[params[:format]]]

 module Mime
 ...
 ALL = Type.new "*/*", :all
 TEXT = Type.new "text/plain", :text
 HTML = Type.new "text/html",:html, %w(application/xhtml+xml)
 XML = Type.new "application/xml", :xml, %w(text/xml application/x-xml)
 ...
 SET = [ALL, TEXT, HTML, JS, ICS, XML, RSS, ATOM, YAML, JSON]

 LOOKUP = Hash.new { |h, k| h[k] = Type.new(k) unless k == "" }
 LOOKUP["*/*"] = ALL
 LOOKUP["text/html"] = HTML
 LOOKUP["application/xhtml+xml"] = HTML
 LOOKUP["application/xml"] = XML
 LOOKUP["text/xml"] = XML
 LOOKUP["application/x-xml"] = XML
 ...
 EXTENSION_LOOKUP = Hash.new { |h, k| h[k] = Type.new(k) unless k == "" }
 EXTENSION_LOOKUP["html"] = HTML
 EXTENSION_LOOKUP["xhtml"] = HTML
 EXTENSION_LOOKUP["txt"] = TEXT
 EXTENSION_LOOKUP["xml"] = XML
 ...
 end

48

48

If there’s a format value in the params Hash, Rails looks up the value that corresponds with that format
value in the Mime::EXTENSION_LOOKUP Hash. EXTENSION_LOOKUP is defined near the bottom of this
abbreviated version of the Mime module. You can see that the value for each format type is a constant
named for that format type. These constants are defined near the top of the module. Each one is a
Mime::Type.

Determining Which MIME Type Gets Priority
If params[:format] is supplied...

 [Mime::EXTENSION_LOOKUP[params[:format]]]

 module Mime
 ...
 ALL = Type.new "*/*", :all
 TEXT = Type.new "text/plain", :text
 HTML = Type.new "text/html",:html, %w(application/xhtml+xml)
 XML = Type.new "application/xml", :xml, %w(text/xml application/x-xml)
 ...
 SET = [ALL, TEXT, HTML, JS, ICS, XML, RSS, ATOM, YAML, JSON]

 LOOKUP = Hash.new { |h, k| h[k] = Type.new(k) unless k == "" }
 LOOKUP["*/*"] = ALL
 LOOKUP["text/html"] = HTML
 LOOKUP["application/xhtml+xml"] = HTML
 LOOKUP["application/xml"] = XML
 LOOKUP["text/xml"] = XML
 LOOKUP["application/x-xml"] = XML
 ...
 EXTENSION_LOOKUP = Hash.new { |h, k| h[k] = Type.new(k) unless k == "" }
 EXTENSION_LOOKUP["html"] = HTML
 EXTENSION_LOOKUP["xhtml"] = HTML
 EXTENSION_LOOKUP["txt"] = TEXT
 EXTENSION_LOOKUP["xml"] = XML
 ...
 end

49

 # Encapsulates the notion of a mime type.
 class Type
 ...
 def initialize(string, symbol = nil, synonyms = [])
 ...
 end

49

Mime::Type is a convenience class that represents a MIME Type and provides easy access to the type
name, extension and synonyms.

This slide does not show all the declarations for all pre-defined Mime::Type constants -- but they are
all listed in the Array assigned to the SET constant.

in environment.rb
Mime::Type.register "easter_egg", :egg, %w(undocumented/whimsy)

Custom Types & Extensions

class Mime::Type
 ...
 def register(string, symbol, synonyms = [])
 Mime.send :const_set, symbol.to_s.upcase,
 Type.new(string, symbol, synonyms)
 SET << Mime.send(:const_get, symbol.to_s.upcase)
 LOOKUP[string] = EXTENSION_LOOKUP[symbol.to_s] = SET.last
 end
 ...
end

EGG = Type.new(“easter_egg”, :egg, [“undocumented/whimsy”])
SET = [ALL, TEXT, HTML, JS, ICS, XML, RSS, ATOM, YAML, JSON, EGG]
LOOKUP[“easter_egg”]=EGG
EXTENSION_LOOKUP[“egg”]=EGG

50

50

If your action supports a type that is not included in the SET, you need to register it in environment.rb.

Mime::Type.register creates a Mime::Type constant for your custom type using the String, extension
symbol and any synonyms you suppy. It then adds the new constant to the LOOKUP Hash and the
EXTENSION_LOOKUP Hash and SET.

Determining Which MIME Type Gets Priority
If params[:format] is not supplied...

@mime_type_priority =
 eval(
 "(params[:format] && Mime::EXTENSION_LOOKUP[params[:format]]) ? " +
 "[Mime::EXTENSION_LOOKUP[params[:format]]] : request.accepts",
 block_binding
)

class AbstractRequest
 ...
 def accepts
 @accepts ||=
 if @env['HTTP_ACCEPT'].to_s.strip.empty?
 [content_type, Mime::ALL]
 else
 Mime::Type.parse(@env['HTTP_ACCEPT'])
 end
 end
 ...
end

51

typical Firefox Accept header
text/xml,application/xml, application/xhtml+xml,
text/html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5

51

If there’s not a format value in the params Hash, Rails defers to request.accepts, which sets
@mime_type_priority to Mime::ALL (the constant that corresponds to specifying “*/*” in the Accept
header) if there’s no Accept header associated with the request and calls Mime::Type.parse otherwise,
passing it the Accept header.

Inside the oval is an example of an Accept header. It’s the default header used when you browse with
Firefox. The q’s represent the q factor or quality factor, which is used to specify a percentage of the ideal
quality that would be acceptable for a particular format. Sometimes it makes sense to sacrifice image or audio
quality for increased download speed. If no q factor is supplied, a quality factor of “1” is assumed. For the
remainder of this walk-through, lets assume the user made the request for details about a train station while
browsing with Firefox.

def parse(accept_header)
 index = 0
 list = accept_header.split(/,/).map! do |i|
 AcceptItem.new(index += 1, *i.split(/;\s*q=/))
 end.sort!
 ...# Handle text\xml by replacing it with app\xml if necessary
 ...# Sort more specific xml-based types ahead of app/xml
 list.map! { |i| Mime::Type.lookup(i.name) }.uniq!
 list
end

Prioritize Supported Types Per the HTTP Spec

52

class AcceptItem
 ...
 def initialize(order, name, q=nil)
 ...
 q ||= 0.0 if @name == "*/*"
 @q = ((q || 1.0).to_f * 100).to_i
 end
 def <=>(item)
 result = item.q <=> q
 result = order <=> item.order if result == 0
 result
 end
 ...
end

52

Mime::Type.parse breaks down the Accept header into one or more AcceptItems depending on how
many types are included in the Accept header.

AcceptItem is a helper class that sorts the specified types (by virtue of its custom spaceship operator
definition) based q factor (quality factor) and order of appearance in the Accept header.

Mime::Type.parse returns an ordered Array of Mime::Type constants. Types with a higher q factor and that
appear earlier in the Accept header end up at the top of the list.

def parse(accept_header)
 index = 0
 list = accept_header.split(/,/).map! do |i|
 AcceptItem.new(index += 1, *i.split(/;\s*q=/))
 end.sort!
 ...# Handle text\xml by replacing it with app\xml if necessary
 ...# Sort more specific xml-based types ahead of app/xml
 list.map! { |i| Mime::Type.lookup(i.name) }.uniq!
 list
end

Prioritize Supported Types Per the HTTP Spec

53

class AcceptItem
 ...
 def initialize(order, name, q=nil)
 ...
 q ||= 0.0 if @name == "*/*"
 @q = ((q || 1.0).to_f * 100).to_i
 end
 def <=>(item)
 result = item.q <=> q
 result = order <=> item.order if result == 0
 result
 end
 ...
end

Firefox
text/xml,application/xml,
application/xhtml+xml,
text/html;q=0.9,
text/plain;q=0.8,image/png,
/;q=0.5

Mime::HTML
Mime::XML
Mime::PNG
Mime::TEXT
Mime::ALL

53

Given the default Firefox Accept header, Mime::Type.parse returns [HTML, XML, PNG, TEXT, ALL].

def respond_to(*types, &block)

 raise ArgumentError, "respond_to takes either types or a block..."
 unless types.any? ^ block

 block ||= lambda {|responder|types.each {|type| responder.send(type)}}

 responder = Responder.new(block.binding)

 block.call(responder)

 responder.respond

end

The respond_to Source

from ActionController::MimeResponds::InstanceMethods

54

54

Now we’re up to the penultimate line of code in respond_to. Here Rails actually calls the logic in the
block we passed to respond_to (or the block that was created based on the supplied *types), passing it
the newly-created Responder.

The respond_to Block Methods: MIA

class Responder
 ...
 def method_missing(symbol, &block)
 mime_constant = symbol.to_s.upcase

 if Mime::SET.include?(Mime.const_get(mime_constant))
 custom(Mime.const_get(mime_constant), &block)
 else
 super
 end
 end
 ...
end

55

block.call(responder)

 respond_to do |format|
 format.html
 format.xml {:xml => @train_station.to_xml}
 format.egg { render_and_stream_train }
 end

html: method missing

55

The block we passed to respond_to call from the show action we’ve been looking at throughout this
presentation is at the top of this slide, for reference. First a method named “html” is called on the
object passed to the block, which in this case is our newly-minted Responder.

There is no “html” method defined for our Responder. When an unknown method is called on an
object, Ruby invokes method_missing for that object. The default behavior for method_missing is to
raise an Error. But method_missing is overridden for the Responder class to call a method called
“custom”, passing it the Mime::Type constant that corresponds to the method name and the block that
was passed to the method (if a block was passed to the method).

 #called by Responder.method_missing
 def custom(mime_type, &block)
 mime_type =
 mime_type.is_a?(Mime::Type) ?
 mime_type : Mime::Type.lookup(mime_type.to_s)

 @order << mime_type

 if block_given?
 @responses[mime_type] = Proc.new do
 eval "response.content_type = '#{mime_type.to_s}'",
 @block_binding
 block.call
 end
 else
 if source = DEFAULT_BLOCKS[mime_type.to_sym]
 @responses[mime_type] = eval(source,@block_binding)
 else
 raise ActionController::RenderError,
 "Expected a block but none was given ..."
 end
 end
 end

Link Supported Types & Responses: format.html

56

56

The “custom” method adds the specified Mime::Type to its @order Array. Recall that the @order Array
represents the response formats that the Controller action supports.

If a block is passed to custom (the Kernel method block_given? will return true), it means that a custom
behavior block was provided for the format in the respond_to block, and a key\value pair will be added
to the @responses Hash where the key is a Mime::Type constant and the value is a Proc based on that
custom behavior block. The Proc also sets the content_type for the response based on the Mime::Type.

In this case, for HTML, a custom logic block was not provided, so Rails checks the DEFAULT_BLOCKS
Hash to see if there’s a default block associated with HTML.

class Responder
 DEFAULT_BLOCKS = [:html, :js, :xml].inject({}) do |blocks, ext|
 template_extension = (ext == :html ? '' : ".r#{ext}")
 blocks.update ext =>
 %(Proc.new { render :action => "\#{action_name}#{template_extension}",
 :content_type => Mime::#{ext.to_s.upcase} })
 end
 ...
end

 DEFAULT_BLOCKS =
 {:xml=>
 "Proc.new { render :action => \"\#{action_name}.rxml\” ,
 :content_type => Mime::XML }",
 :html=>
 "Proc.new { render :action => \"\#{action_name}\",
 :content_type => Mime::HTML }",
 :js=>
 "Proc.new { render :action => \"\#{action_name}.rjs\",
 :content_type => Mime::JS }"}

Default Handling for Standard Templates

57

57

This slides shows how the DEFAULT_BLOCKS Hash gets populated. Rails loops through the default
formats, adding a key\value pair to the Hash for each format. The key is the symbol for the format,
and the value is a Proc based on a block that renders the View template the corresponds with the
format.

Since there’s a DEFAULT_BLOCK associated with HTML...

 #called by Responder.method_missing
 def custom(mime_type, &block)
 mime_type =
 mime_type.is_a?(Mime::Type) ?
 mime_type : Mime::Type.lookup(mime_type.to_s)

 @order << mime_type

 if block_given?
 @responses[mime_type] = Proc.new do
 eval "response.content_type = '#{mime_type.to_s}'",
 @block_binding
 block.call
 end
 else
 if source = DEFAULT_BLOCKS[mime_type.to_sym]
 @responses[mime_type] = eval(source,@block_binding)
 else
 raise ActionController::RenderError,
 "Expected a block but none was given ..."
 end
 end
 end

Link Supported Types & Responses: format.html

58

@order =[Mime::HTML]

@responses[Mime::HTML] =
 Proc.new { render :action => “show”,
 :content_type => Mime::HTML }

58

...a Proc based on the default logic for HTML is added to the @responses Hash.

Mime::HTML is added to @order (which represents the format supported by the Controller action).

The respond_to Block Methods: MIA

class Responder
 ...
 def method_missing(symbol, &block)
 mime_constant = symbol.to_s.upcase

 if Mime::SET.include?(Mime.const_get(mime_constant))
 custom(Mime.const_get(mime_constant), &block)
 else
 super
 end
 end
 ...
end

59

block.call(responder)

 respond_to do |format|
 format.html
 format.xml {:xml => @train_station.to_xml}
 format.egg { render_and_stream_train }
end

XML: method missing

59

Now we return to executing the logic in the respond_to block. A method called “xml” is called on our
Responder. Again, method_missing is invoked because there is no “xml” method defined for our
Responder -- and again method_missing invokes the “custom” method.

Link Supported Types & Responses: format.xml

60

 #called by Responder.method_missing
 def custom(mime_type, &block)
 mime_type =
 mime_type.is_a?(Mime::Type) ?
 mime_type : Mime::Type.lookup(mime_type.to_s)

 @order << mime_type

 if block_given?
 @responses[mime_type] = Proc.new do
 eval "response.content_type = '#{mime_type.to_s}'",
 @block_binding
 block.call
 end
 else
 if source = DEFAULT_BLOCKS[mime_type.to_sym]
 @responses[mime_type] = eval(source,@block_binding)
 else
 raise ActionController::RenderError,
 "Expected a block but none was given ..."
 end
 end
 end

@responses[Mime::XML] =
 Proc.new do
 eval "response.content_type = ‘application/xml’",
 @block_binding
 block.call
 end

{render :xml =>@train_station.to_xml}

@order=[Mime::HTML, Mime::XML]

60

This time through “custom”, we added XML to the @order Array (which represents the formats the
Controller action supports). We also add a key\value pair to the @responses Hash, where the key is
Mime::XML and the value is a Proc based on the custom logic block paired with XML in the respond_to
block.

The respond_to Block Methods: MIA

class Responder
 ...
 def method_missing(symbol, &block)
 mime_constant = symbol.to_s.upcase

 if Mime::SET.include?(Mime.const_get(mime_constant))
 custom(Mime.const_get(mime_constant), &block)
 else
 super
 end
 end
 ...
end

61

block.call(responder)

 respond_to do |format|
 format.html
 format.xml {:xml => @train_station.to_xml}
 format.egg { render_and_stream_train }
end

EGG: method missing

61

Now we’re up to the last line in the respond_to block. We call a method named “egg” on the
Responder, which triggers method_missing, which invokes “custom”.

Link Supported Types & Responses: format.egg

62

 #called by Responder.method_missing
 def custom(mime_type, &block)
 mime_type =
 mime_type.is_a?(Mime::Type) ?
 mime_type : Mime::Type.lookup(mime_type.to_s)

 @order << mime_type

 if block_given?
 @responses[mime_type] = Proc.new do
 eval "response.content_type = '#{mime_type.to_s}'",
 @block_binding
 block.call
 end
 else
 if source = DEFAULT_BLOCKS[mime_type.to_sym]
 @responses[mime_type] = eval(source,@block_binding)
 else
 raise ActionController::RenderError,
 "Expected a block but none was given ..."
 end
 end
 end

@responses[Mime::EGG] =
 Proc.new do
 eval "response.content_type = ‘easter_egg’",
 @block_binding
 block.call
 end

{render_and_stream_train}

@order=
[Mime::HTML,Mime::XML,Mime::EGG]

62

This time through “custom” we add Mime::EGG to @order. The @responses Hash gets a key\value pair
where the key is Mime::EGG and the value is a Proc based on the custom Easter egg logic.

def respond_to(*types, &block)

 raise ArgumentError, "respond_to takes either types or a block..."
 unless types.any? ^ block

 block ||= lambda {|responder|types.each {|type| responder.send(type)}}

 responder = Responder.new(block.binding)

 block.call(responder)

 responder.respond

end

The respond_to Source

from ActionController::MimeResponds::InstanceMethods

63

63

Now we’re up to the last line of respond_to. It’s where Rails actually issues a response to the client. A
method called “respond” is invoked on our Responder.

def respond
 for priority in @mime_type_priority
 if priority == Mime::ALL
 @responses[@order.first].call
 return
 else
 if priority === @order
 @responses[priority].call
 return # mime type match found, be happy and return
 end
 end
 end
 # if :all is not supported, return an error status
end

Are Our Priorities in @order?

64

@mime_type_priority
Mime::HTML
Mime::XML
Mime::PNG
Mime::TEXT
Mime::ALL

@order
[Mime::HTML, Mime::XML, Mime::EGG]

64

Here we loop through the types in the @mime_type_priority Array (which represents the formats the
client will accept) until we find a match in the @order Array (which represents the formats the
Controller action supports). If there had been a format value in the params Hash, @mime_type_priority
would have been an Array with a single element -- the Mime::Type constant associated with that one
format.

If the top priority is Mime::ALL, the logic linked to whatever format is referenced first in the respond_to
block gets executed.

def respond
 for priority in @mime_type_priority
 if priority == Mime::ALL
 @responses[@order.first].call
 return
 else
 if priority === @order
 @responses[priority].call
 return # mime type match found, be happy and return
 end
 end
 end
 # if :all is not supported, return an error status
end

Are Our Priorities in @order?

class Mime::Type
 def ===(list)
 if list.is_a?(Array)
 (@synonyms + [self]).any? { |synonym| list.include?(synonym) }
 else
 super
 end
 end
end

65

@mime_type_priority
Mime::HTML
Mime::XML
Mime::PNG
Mime::TEXT
Mime::PNG

@order
[Mime::HTML, Mime::XML, Mime::EGG]

65

Otherwise, the threequal operator, which we talked about in the first part of the presentation, is used
to determine whether there’s a match. It is overridden for Mime::Type to compare a single Mime::Type
with an Array of Mime::Types, and also to take the synonyms for the types into account.

Many Happy Returns

def respond
 for priority in @mime_type_priority
 if priority == Mime::ALL
 @responses[@order.first].call
 return
 else
 if priority === @order
 @responses[priority].call
 return # mime type match found, be happy and return
 end
 end
 end

 if @order.include?(Mime::ALL)
 @responses[Mime::ALL].call
 else
 eval 'render(:nothing => true,
 :status => "406 Not Acceptable")', @block_binding
 end
end

66

@mime_type_priority
Mime::HTML
Mime::XML
Mime::PNG
Mime::TEXT
Mime::ALL

@order
[Mime::HTML,Mime::XML,Mime::EGG

@responses[priority].call

66

Rails responds to the client’s request by calling the Proc stored in @responses for first type in
@mime_type_priority that also exists in @order.

Here we have a match! Rails determined that the client “wants” HTML and responds to the client’s
request to show train station details on a Web page by rendering show.rthml.

The comment “be happy and return” actually exists in the Rails source!

67

http://localhost:3000/tickets/1.egg_9_3_4

67

The actual presentation concluded with a demo. I didn't want to demo what happens when you tack ".egg" onto
the end of the URL mapped to the show action for TrainStations. I felt the screenshot of the browser on one of the
slides was sufficient for that.

So I brought up Harry Potter again. Students take the Hogwarts Express to school at the beginning of each
school year. The train leaves from Platform 9 3/4. Harry is bewildered when he goes to the train station to journey
to Hogwarts for the first time. He can't find Platform 9 3/4. Between Platform 9 and Platform 10, there's a brick
barrier. He learns that the only way you can get to Platform 9 3/4 is by magically walking through that barrier.

So..I typed the URL mapped to the show action with an egg_9_3_4 extension....

 |=========|
 __[]__ _ _______/
+================+ /______\ __(_)__ () _____/ ()
 `-+ +-----+---+ | |------| /_______\ /__\ | | +======+
 | | | | +-+------+-. |=======| <____> | | || ||
 | | | | |o _|___ __|__//__|___|_+======+
 | +=========+ |o o||=+
 | * * |o HOGWARTS EXPRESS o||||
 | --%-- |o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o||=+
 +=====================================+-----------+====+
 |==/ ------ \=====/ ------ \===%--||o o||____
 // \ L_/_____//___L_/___/ %=||o~~~~~~~~o||===_____
 ||__ /. ___________ . ______/ +==============+ \ _
 || __/ || || __/ || //--\\ //--\\\\ \ \ _
 \\ / || \ // \\ / || \ // ((<>))((<>))____\\\\
 \========/ \========/ ____/ ____/ `-----------+
andre dziedzic - targi@angelone.line.org

68ASCII art from http://www.ascii-art.de (sans ‘Hogwarts Express’)

http://localhost:3000/tickets/1.egg_9_3_4

68

...and this is what shows up.

How did I implement that? I leave that as an exercise for the reader!

mailto:targi@angelone.line.org
mailto:targi@angelone.line.org
http://www.ascii-art.de
http://www.ascii-art.de

