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Introducing Camel



 

 

Camel Basics

! Common code for many integration needs

– Routing & transformation

– Addresses many of the standard Enterprise 
Integration Patterns

– Supports many transports/protocols

– Easy integration with Spring and other friends...

! Not really a standalone product

– More a big set of tools and glue

– Lightweight and easy to leverage



 

 

Using Camel

! Set up protocol endpoints, transformers, routing 
rules, bean invocations, etc.

! Define all this in a Spring config file, or a Java (or 
Scala) DSL, or to some extent using annotations

! Run Camel as part of a Spring application, or an 
OSGi bundle, or a ServiceMix application, or part 
of an ActiveMQ broker, or... or... or...

! Pretty lightweight and simple way to add 
integration to an application



 

 

However...

! Camel is not an ESB

– No formal “bus” definition

– No explicit persistence of in-flight messages

– No deployment model

– Not based on JBI or other standards

– No bundled admin tools (coming in next version)

! It's really the lightweight integration solution

– Handles messaging, files, HTTP services, bean 
invocations, scheduler, etc., etc., etc.



 

 

With Routing/Transformation

! Can construct routing expressions with various 
languages (scripting, XPath, etc.)

! Can split/merge messages

! Can do pipelines or parallel execution

! Can apply transformers, either automatic (e.g. 
body XML to POJOs using JAXB) or manual 
(calling a bean method to transform a message)

! ...But does not store state like BPEL and friends



  

Camel Concepts



 

 

Key Concepts

! A CamelContext handles a set of routes

! The routes are defined in XML or a Java* DSL

! They use various Endpoints for input and output

– Which are generated by various Components

! They may use expression languages, scripting 
languages, templating languages, etc.

! The routes are applied to Exchanges (composed 
of in and out Messages)

! Messages use various Data Formats



 

 

The CamelContext

! The unit of Camel configuration, holding one or 
more Routes

! May be (with some effort) run standalone, or 
defined in e.g. a Spring or ActiveMQ config file or 
a ServiceMix service unit or OSGi bundle

! Can be started or stopped as a whole, but 
individual elements within it generally can't be

! All the Camel logic is executed in the JVM that 
runs the CamelContext



 

 

Routes

! A route defines the path between one or more 
Endpoints

– The route may include input, output, and various 
decisions or processing along the way

! e.g. Take a JMS message off a certain queue, unmarshall 
the XML body to Java Beans, pass them to a POJO 
method selected based on some message header, and 
generate a reply message from the return value

! Routes may be defined in XML or in Java code 
(now also a Scala DSL option)

– Route definitions are processed once when the 
CamelContext starts



 

 

Components & Endpoints

! A component is a factory for endpoints

– The JMS component manages connectivity to a JMS 
broker and produces topic/queue endpoints

– The Bean component manages invoking POJOs, and 
its endpoints are beans or bean methods

! An endpoint is used in a route (typically the 
“from” or “to” part of the route)

– It creates and/or consumes Message Exchanges

– Create an exchange from a message received from 
Endpoint A, do something, and send the result to 
Endpoint B



 

 

Endpoint URIs

! An endpoint is defined by a URI

– Starting with a scheme that identifies which 
component should create the endpoint

! activemq:topic:MyTopic

! bean:SomeSpringBean?methodName=callMe

! Each component includes a default configuration 
registered under a default scheme (e.g. bean:)

! You can also create custom definitions of a 
component with custom settings, overriding the 
default scheme or using any other scheme



 

 

Messages & Exchanges

! An Exchange contains an input message, and 
possibly an output message, an exception, etc.

! A message is a generic concept, and has 
headers, a body, attachments, etc.

! There are specific implementations for JMS, 
Files, JMX, etc.

! The message body can be converted between 
various data formats (XML, Java Beans, File, 
etc.)



 

 

Languages

! Camel supports many languages for helping to 
define routes

– Expression language (like JSP EL)

– Scripting Languages (Groovy, Python, Ruby, etc.)

– XPath, XQuery

– OGNL/JXPath

– ...

! Useful for expressing conditions (header 'Foo' = 
'Bar', body contains 'Baz', etc.)



 

 

Data Formats

! If a message uses a known Data Format (XML, 
CSV, etc.), then you can use canned 
transformers on the message body

– e.g. Convert XML to JavaBeans using JAXB or 
XMLBeans

– Then endpoints further along can just expect the new 
format

! e.g. a JavaBean method whose argument is a JAXB bean 
rather than a String or XML document



  

Using Camel



 

 

Camel in a Spring Application

! Start by adding the right libraries

– camel-core-1.6.0.jar and other camel-* JARs as 
needed (JMS, scripting, etc.)

– perhaps activemq-core-5.1.0.jar

! Add a <camelContext> element to the Spring 
config file

– Uses the Spring 2.x XML syntax to avoid loads of 
<bean> definitions

! Either define routes in the <camelContext> or 
point to Java DSL classes



 

 

Camel Logging

! Many problems only manifest in log output

! Camel uses commons logging

– Defaults to Log4J

! Be sure to add a log4j.properties if your project 
does not already contain one!

– Trust me, you will want to see the errors when 
messages aren't delivered properly for some reason



 

 

Note on the DSL

! Route definitions in the DSL are processed once 
at startup

– Same as XML route definitions – no special abilities 
just because it's Java code

– In particular, you can't put dynamic logic in there that 
should be executed every time the route is executed

– Instead, put that logic in a bean and have the route 
invoke the bean

! Use an endpoint URI like bean:foo?methodName=callMe 
where “foo” is the name of a Spring bean



 

 

Typical Maven POM with Camel

<project xmlns="http://maven.apache.org/POM/4.0.0">

    ...

    <dependencies>

        <dependency> <!-- brings camel-core too -->

            <artifactId>camel-jms</artifactId>

            <groupId>org.apache.camel</groupId>

            <version>1.6.0</version>

        </dependency>

        <dependency> <!-- if you're using ActiveMQ -->

            <artifactId>activemq-core</artifactId>

            <groupId>org.apache.activemq</groupId>

            <version>5.2.0</version>

        </dependency>

        <!-- Also maybe camel-script, camel-juel,

             camel-jxpath, camel-ognl, camel-groovy, etc. -->

        ...



 

 

Spring Configuration with Camel

<beans ...>

  <camelContext id="camel"

       xmlns="http://activemq.apache.org/camel/schema/spring">

    <!-- A package with Java DSL classes defining routes -->

    <package>com.something.camel.dsl</package>

    <!-- A route defined right here in XML -->

    <route>

      <from uri="activemq:queue:InputQueue" />

      <to uri="activemq:topic:OutputTopic" />

    </route>

  </camelContext>

</beans>



 

 

Java DSL Route Definition

public class MyRoutes extends RouteBuilder {

    public void configure() throws Exception {

        // One Route

        from("activemq:topic:DSL.TestTopic")

             .to("activemq:queue:DSL.TestQueue");

        // Another Route

        from("activemq:topic:DSL.OtherTopic")

             .choice()

                .when().el("${in.header.foo == 'Foo'}")

                   .to("activemq:queue:DSL.FooQueue")

                .when().groovy("in.header.foo == 'Bar'")

                   .to("activemq:queue:DSL.BarQueue")

                .when().ognl("['in'].header.foo == 'Baz'")

                   .to("activemq:queue:DSL.BazQueue");

    }

}



 

 

Another Option: Annotated Beans

! The @MessageDriven annotation means you 
can set up a bean to receive messages without 
defining an explicit route

– But no fancy abilities like transformation or filtering

! Though Camel respects the JMSReplyTo header for JMS

! You can use all the other annotations on beans 
named explicitly in routes (as well as 
@MessageDriven beans)

– For annotating parameters to bean methods to bring 
in the message body, headers, and expressions, or to 
set headers on the reply message



 

 

Bean Annotations with Camel

public class MyBean {

    @MessageDriven(uri = "activemq:topic:AnnotationTest")

    // Assumes JMSReplyTo is set on the incoming messages

    public String doSomethingAndReply(@Body String body,

            @EL("${in.headers.cost > 1000}") boolean valuable,

            @OutHeaders Map responseHeaders)  {

        String outputMessage = ...;

        responseHeaders.put("valuable", valuable);

        return outputMessage;

    }

}



 

 

Camel Capabilities

! Sending messages between endpoints

! Content-based routing

– Headers easiest, body content possible too

! Filtering

! Transformation (between data formats, or with 
custom code or templates)

! Manipulating the message flow (aggregating, 
resequencing, etc.)



 

 

Camel Components

! A long list, including:

– JMS

– JavaBeans / Spring Beans

– CXF (Web Services)

– Files

– HTTP/FTP/SMTP

– Quartz scheduler

– SQL/JPA

– Velocity/XSLT



 

 

Working with Routes

! May need to customize certain components 
(enable transactions on JMS, etc.)

! Figure out what the route should look like, with 
integration patterns, various beans, expressions 
and transformations, etc.

! Write a unit test?  (!!)

! Figure out how to express the route in XML or 
DSL

! Code the expressions, beans, templates, etc.



  

Sample Integration 
Scenarios

with Camel



 

 

Shared E-mail Service

! One of the services on an SOA project:

– Client makes Web Service call with to, from, subject, 
body, HTML body, etc.

– Service validates parameters, and returns success or 
error to the caller

– Maps arguments to an e-mail message

– Calls a third-party e-mail provider (XML over HTTP?)

! Retries if necessary

– Handles the response from the e-mail provider



 

 

Modeling the E-mail Service

! Part 1

– CXF accepts client call

– Camel routes to a JavaBean to validate arguments

– Camel sends a JMS message to a queue with 
message arguments

– Camel replies to the sender

– When complete, caller is finished, message with e-
mail data is on a queue



 

 

Modeling the E-mail Service

! Part 2

– Camel reads e-mail with message data off the queue

– Camel sends to a Velocity template, which formats 
the e-mail and puts it into the XML form used for the 
third-party e-mail service

! Selecting a template based on whether an HTML body is 
present

– The finished e-mail is posted to another queue

! This could be combined with the previous bit if 
you don't mind holding up the client to get the 
message formatted



 

 

Modeling the E-mail Service

! Part 3

– Camel reads the finished message from the queue 
using a transactional receive

– Camel calls the third party e-mail service using the 
HTTP component

– On a failure, the receive is rolled back and retried

– On success, response is passed to POJO (if needed)

– Need to customize the JMS component here to 
enable transactions

– Use an error handler to set a custom retry duration 
(likely, a few minutes)



 

 

E-mail Service in Camel
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E-mail Configuration Excerpt

public class MyRoutes extends RouteBuilder {

    public void configure() throws Exception {

        // Last 2/3 of the configuration from previous slide

        from("activemq:queue:IncomingMessages")

             .choice()

                .when().el("${in.header.html}")

                   .to("velocity:templates/HTMLMessage")

                   .to("activemq:queue:OutgoingMessages")

                .when().el("${!in.header.html}")

                   .to("velocity:templates/TextMessage")

                   .to("activemq:queue:OutgoingMessages");

        from("jmswithtx:queue:OutgoingMessages")

             .to("http://mailservice.com/sendMail")

             .to("bean:handleMailServiceResponse");

    }

}



 

 

Messaging Configuration Excerpt

<beans ...>

  <camelContext id="camel">

    <!-- Specify DSL packages here -->

  </camelConxtext>

  <bean name="jmxwithtx"

class="org.apache.activemq.camel.component.ActiveMQComponent">

    <property name="brokerURL" value="tcp://foo.com:61616" />

    <property name="transacted" value="true" />

    <property name="transactionManager" ref="tm" />

  </bean>

</beans>



 

 

Multiple Business Partners

! From an integration project:

– Data received from multiple business partners in 
varying ways

! XML over FTP, CSV over HTTP, XLS over e-mail

– Data must be converted to canonical format and 
posted to a JMS queue

! Gets sent to an accounting system

– A JMS response must be received, formatted, and e-
mailed to the partner



 

 

Modeling the Business Partners

! Step 1: receive data

– Set up a route for each partner

! Use the File component to look for FTP files

! Use the Jetty component to receive HTTP files

! Use the Mail component to receive unread messages from 
a POP or IMAP mailbox

– The route should send the data to the next step for 
format conversions



 

 

Modeling the Business Partners

! Step 2: format data

– Define the canonical format as a set of JAXB POJOs 
mapping to the canonical XML format

– Set up a route for each partner, with a JavaBean that 
converts the input format to the JAXB POJOs

! Camel can autoconvert CSV to Java objects

! Could use POI to process the XLS

– Use the automatic JAXB type converter to turn the 
POJOs into an XML document

– Or just use XSLT to convert XML input



 

 

Modeling the Business Partners

! Step 3: Deal with accounting system

– The message is now in XML format, easy to send to 
a queue

– Set up another route to handle responses from the 
response queue

! Send it to a bean to do the processing and extract any 
needed parameters, including a message header for the 
destination partner

! Route to a different path based on the partner

! Then to a Velocity template to format the response e-mail

! Then to an SMTP component to send the mail



 

 

Business Partners in Camel
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Partners Configuration Excerpt

<beans ...>

  <camelContext id="camel"

       xmlns="http://activemq.apache.org/camel/schema/spring">

    <!-- The route for CSV Input -->

    <route>

      <from uri="jetty:http://localhost:5000/CSVInput"/>

      <unmarshal><csv/></unmarshal>

      <to uri="bean:CSVConverter"/>

      <marshal><jaxb prettyPrint="true" /></marshal>

      <to uri="activemq:queue:ToAccounting"/>

    </route>

  </camelConxtext>

  <bean name="CSVConverter" class="com.xyz.CSVConverterBean"/>

</beans>



 

 

Testing the CSV Route

@ContextConfiguration(locations = "/CSVInputTest-context.xml")

public class ExcelInputTest extends AbstractJUnit38SpringContextTests {

    @Autowired

    protected CamelContext camelContext;

    protected ProducerTemplate<Exchange> template;

    protected void setUp() throws Exception {

        template = camelContext.createProducerTemplate();

    }

    public void testCSVConversion() throws InterruptedException {

        MockEndpoint finish = MockEndpoint.resolve(camelContext, "mock:finish");

        finish.setExpectedMessageCount(1);

        InputStream in = ExcelInputTest.class.getResourceAsStream("/input.csv");

        assertNotNull(in);

        template.sendBody("direct:CSVstart", in);

        MockEndpoint.assertIsSatisfied(camelContext);

        assertEquals(Invoice.class, finish.getExchanges().get(0).getIn().getBody

().getClass());

    }

}



  

Camel Concerns



 

 

Crash & Recovery

! If the JVM goes down, any exchanges in process 
are lost

– A transaction manager can recover in-flight 
transactions

– However, only a few of the components support 
transactions (though they use the Spring TX 
Manager, so e.g. a Spring Bean could hook in)

! Could put e.g. persistent JMS queues or DB calls 
between steps in a process?

! Could actually use interceptors to store state of 
in-flight exchanges?



 

 

Deployment

! Camel itself does not support deployment, hot 
deployment, or redeployment

– A CamelContext can be started or stopped, but it has 
to be something outside of Camel that does it

! Spring does not have a deployment model either

! May look to Spring DM, ServiceMix 3, ServiceMix 
4 Kernel + OSGi, or a Spring app deployed in 
Tomcat or some other container



  

Camel Deployments



 

 

Deploying Camel Routes

! Due to the deploy/redeploy issue, Camel routes 
should typically be deployed in some other 
container for production

– ServiceMix

– Spring DM

– Spring + Tomcat

– etc.

! All of these can take a Spring config file as the 
configuration format



 

 

Testing Camel Routes

! The same Spring config file can be used in unit 
tests

! May want to separate component definitions from 
routes so that tests can use different component 
configurations (e.g. in-VM ActiveMQ)

! Also extensive support for mock destinations for 
testing, though it may be harder to use the exact 
route definitions that way

– But remember, you can redefine the activemq: or 
other scheme to use the mock component!



 

 

Building Camel App Modules

! Extensive Maven support

– camel-maven-plugin can run artifacts in Camel, as 
well as generating visualizations of the routes as part 
of the Maven docs

– maven-bundle-plugin can build OSGi bundles, 
including bundles holding Camel routes

– jbi-maven-plugin can build JBI service units and 
service assemblies, including Camel service units

! But all of these formats are zip/jar based at heart, 
so the regular Maven JAR build works fine too



  

Camel Versions



 

 

Camel Releases

! 1.6.0 is the current release, with significant 
improvements over the early 1.x releases

– It's built against Spring 2.5

! 2.0 is the next upcoming Camel release

! ActiveMQ 5.2.0 includes Camel 1.5.0 but you 
can run it fine with Camel 1.6.0 instead

! ServiceMix 3.3 includes Camel 1.4.0

! The ServiceMix 4.0 kernel can run Camel OSGi 
bundles



 

 

Camel Libraries

! Even the packages that “include” Camel may 
only include camel-core and maybe camel-jms

! Be prepared to add other Camel JARs for 
scripting support, various components like the 
scheduler, test base classes, etc.

! Those Camel JARs depend on third-party JARs 
for the actual script engines, scheduler services, 
etc.

– Though Maven takes care of this for you



 

 

Bundling Camel

! Camel is still pretty lightweight

– camel-core-1.6.0 is under 1 MB

– camel-core and all 40+ other camel-* JARs are 
around 2 MB total

! But ActiveMQ and Quartz and scripting engines 
and so on will potentially add a noticeable 
amount

! Still, much lighter than your average ESB or 
integration server product
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