

Dead Simple
Integration with
Apache Camel

Aaron Mulder
Chariot Solutions

Agenda

! Introducing Camel

! Camel Concepts

! Using Camel

! Sample Integration Scenarios with Camel

! Camel Concerns

! Camel Deployments

! Camel Versions

Introducing Camel

Camel Basics

! Common code for many integration needs

– Routing & transformation

– Addresses many of the standard Enterprise
Integration Patterns

– Supports many transports/protocols

– Easy integration with Spring and other friends...

! Not really a standalone product

– More a big set of tools and glue

– Lightweight and easy to leverage

Using Camel

! Set up protocol endpoints, transformers, routing
rules, bean invocations, etc.

! Define all this in a Spring config file, or a Java (or
Scala) DSL, or to some extent using annotations

! Run Camel as part of a Spring application, or an
OSGi bundle, or a ServiceMix application, or part
of an ActiveMQ broker, or... or... or...

! Pretty lightweight and simple way to add
integration to an application

However...

! Camel is not an ESB

– No formal “bus” definition

– No explicit persistence of in-flight messages

– No deployment model

– Not based on JBI or other standards

– No bundled admin tools (coming in next version)

! It's really the lightweight integration solution

– Handles messaging, files, HTTP services, bean
invocations, scheduler, etc., etc., etc.

With Routing/Transformation

! Can construct routing expressions with various
languages (scripting, XPath, etc.)

! Can split/merge messages

! Can do pipelines or parallel execution

! Can apply transformers, either automatic (e.g.
body XML to POJOs using JAXB) or manual
(calling a bean method to transform a message)

! ...But does not store state like BPEL and friends

Camel Concepts

Key Concepts

! A CamelContext handles a set of routes

! The routes are defined in XML or a Java* DSL

! They use various Endpoints for input and output

– Which are generated by various Components

! They may use expression languages, scripting
languages, templating languages, etc.

! The routes are applied to Exchanges (composed
of in and out Messages)

! Messages use various Data Formats

The CamelContext

! The unit of Camel configuration, holding one or
more Routes

! May be (with some effort) run standalone, or
defined in e.g. a Spring or ActiveMQ config file or
a ServiceMix service unit or OSGi bundle

! Can be started or stopped as a whole, but
individual elements within it generally can't be

! All the Camel logic is executed in the JVM that
runs the CamelContext

Routes

! A route defines the path between one or more
Endpoints

– The route may include input, output, and various
decisions or processing along the way

! e.g. Take a JMS message off a certain queue, unmarshall
the XML body to Java Beans, pass them to a POJO
method selected based on some message header, and
generate a reply message from the return value

! Routes may be defined in XML or in Java code
(now also a Scala DSL option)

– Route definitions are processed once when the
CamelContext starts

Components & Endpoints

! A component is a factory for endpoints

– The JMS component manages connectivity to a JMS
broker and produces topic/queue endpoints

– The Bean component manages invoking POJOs, and
its endpoints are beans or bean methods

! An endpoint is used in a route (typically the
“from” or “to” part of the route)

– It creates and/or consumes Message Exchanges

– Create an exchange from a message received from
Endpoint A, do something, and send the result to
Endpoint B

Endpoint URIs

! An endpoint is defined by a URI

– Starting with a scheme that identifies which
component should create the endpoint

! activemq:topic:MyTopic

! bean:SomeSpringBean?methodName=callMe

! Each component includes a default configuration
registered under a default scheme (e.g. bean:)

! You can also create custom definitions of a
component with custom settings, overriding the
default scheme or using any other scheme

Messages & Exchanges

! An Exchange contains an input message, and
possibly an output message, an exception, etc.

! A message is a generic concept, and has
headers, a body, attachments, etc.

! There are specific implementations for JMS,
Files, JMX, etc.

! The message body can be converted between
various data formats (XML, Java Beans, File,
etc.)

Languages

! Camel supports many languages for helping to
define routes

– Expression language (like JSP EL)

– Scripting Languages (Groovy, Python, Ruby, etc.)

– XPath, XQuery

– OGNL/JXPath

– ...

! Useful for expressing conditions (header 'Foo' =
'Bar', body contains 'Baz', etc.)

Data Formats

! If a message uses a known Data Format (XML,
CSV, etc.), then you can use canned
transformers on the message body

– e.g. Convert XML to JavaBeans using JAXB or
XMLBeans

– Then endpoints further along can just expect the new
format

! e.g. a JavaBean method whose argument is a JAXB bean
rather than a String or XML document

Using Camel

Camel in a Spring Application

! Start by adding the right libraries

– camel-core-1.6.0.jar and other camel-* JARs as
needed (JMS, scripting, etc.)

– perhaps activemq-core-5.1.0.jar

! Add a <camelContext> element to the Spring
config file

– Uses the Spring 2.x XML syntax to avoid loads of
<bean> definitions

! Either define routes in the <camelContext> or
point to Java DSL classes

Camel Logging

! Many problems only manifest in log output

! Camel uses commons logging

– Defaults to Log4J

! Be sure to add a log4j.properties if your project
does not already contain one!

– Trust me, you will want to see the errors when
messages aren't delivered properly for some reason

Note on the DSL

! Route definitions in the DSL are processed once
at startup

– Same as XML route definitions – no special abilities
just because it's Java code

– In particular, you can't put dynamic logic in there that
should be executed every time the route is executed

– Instead, put that logic in a bean and have the route
invoke the bean

! Use an endpoint URI like bean:foo?methodName=callMe
where “foo” is the name of a Spring bean

Typical Maven POM with Camel

<project xmlns="http://maven.apache.org/POM/4.0.0">

 ...

 <dependencies>

 <dependency> <!-- brings camel-core too -->

 <artifactId>camel-jms</artifactId>

 <groupId>org.apache.camel</groupId>

 <version>1.6.0</version>

 </dependency>

 <dependency> <!-- if you're using ActiveMQ -->

 <artifactId>activemq-core</artifactId>

 <groupId>org.apache.activemq</groupId>

 <version>5.2.0</version>

 </dependency>

 <!-- Also maybe camel-script, camel-juel,

 camel-jxpath, camel-ognl, camel-groovy, etc. -->

 ...

Spring Configuration with Camel

<beans ...>

 <camelContext id="camel"

 xmlns="http://activemq.apache.org/camel/schema/spring">

 <!-- A package with Java DSL classes defining routes -->

 <package>com.something.camel.dsl</package>

 <!-- A route defined right here in XML -->

 <route>

 <from uri="activemq:queue:InputQueue" />

 <to uri="activemq:topic:OutputTopic" />

 </route>

 </camelContext>

</beans>

Java DSL Route Definition

public class MyRoutes extends RouteBuilder {

 public void configure() throws Exception {

 // One Route

 from("activemq:topic:DSL.TestTopic")

 .to("activemq:queue:DSL.TestQueue");

 // Another Route

 from("activemq:topic:DSL.OtherTopic")

 .choice()

 .when().el("${in.header.foo == 'Foo'}")

 .to("activemq:queue:DSL.FooQueue")

 .when().groovy("in.header.foo == 'Bar'")

 .to("activemq:queue:DSL.BarQueue")

 .when().ognl("['in'].header.foo == 'Baz'")

 .to("activemq:queue:DSL.BazQueue");

 }

}

Another Option: Annotated Beans

! The @MessageDriven annotation means you
can set up a bean to receive messages without
defining an explicit route

– But no fancy abilities like transformation or filtering

! Though Camel respects the JMSReplyTo header for JMS

! You can use all the other annotations on beans
named explicitly in routes (as well as
@MessageDriven beans)

– For annotating parameters to bean methods to bring
in the message body, headers, and expressions, or to
set headers on the reply message

Bean Annotations with Camel

public class MyBean {

 @MessageDriven(uri = "activemq:topic:AnnotationTest")

 // Assumes JMSReplyTo is set on the incoming messages

 public String doSomethingAndReply(@Body String body,

 @EL("${in.headers.cost > 1000}") boolean valuable,

 @OutHeaders Map responseHeaders) {

 String outputMessage = ...;

 responseHeaders.put("valuable", valuable);

 return outputMessage;

 }

}

Camel Capabilities

! Sending messages between endpoints

! Content-based routing

– Headers easiest, body content possible too

! Filtering

! Transformation (between data formats, or with
custom code or templates)

! Manipulating the message flow (aggregating,
resequencing, etc.)

Camel Components

! A long list, including:

– JMS

– JavaBeans / Spring Beans

– CXF (Web Services)

– Files

– HTTP/FTP/SMTP

– Quartz scheduler

– SQL/JPA

– Velocity/XSLT

Working with Routes

! May need to customize certain components
(enable transactions on JMS, etc.)

! Figure out what the route should look like, with
integration patterns, various beans, expressions
and transformations, etc.

! Write a unit test? (!!)

! Figure out how to express the route in XML or
DSL

! Code the expressions, beans, templates, etc.

Sample Integration
Scenarios

with Camel

Shared E-mail Service

! One of the services on an SOA project:

– Client makes Web Service call with to, from, subject,
body, HTML body, etc.

– Service validates parameters, and returns success or
error to the caller

– Maps arguments to an e-mail message

– Calls a third-party e-mail provider (XML over HTTP?)

! Retries if necessary

– Handles the response from the e-mail provider

Modeling the E-mail Service

! Part 1

– CXF accepts client call

– Camel routes to a JavaBean to validate arguments

– Camel sends a JMS message to a queue with
message arguments

– Camel replies to the sender

– When complete, caller is finished, message with e-
mail data is on a queue

Modeling the E-mail Service

! Part 2

– Camel reads e-mail with message data off the queue

– Camel sends to a Velocity template, which formats
the e-mail and puts it into the XML form used for the
third-party e-mail service

! Selecting a template based on whether an HTML body is
present

– The finished e-mail is posted to another queue

! This could be combined with the previous bit if
you don't mind holding up the client to get the
message formatted

Modeling the E-mail Service

! Part 3

– Camel reads the finished message from the queue
using a transactional receive

– Camel calls the third party e-mail service using the
HTTP component

– On a failure, the receive is rolled back and retried

– On success, response is passed to POJO (if needed)

– Need to customize the JMS component here to
enable transactions

– Use an error handler to set a custom retry duration
(likely, a few minutes)

E-mail Service in Camel

CXF POJO
validates

arguments

JMS
queue

JMS
queue

Velocity
template

Velocity
template

Routing
expression

JMS
queue

JMS
queue

HTTP
Component

POJO
handles

response

E-mail Configuration Excerpt

public class MyRoutes extends RouteBuilder {

 public void configure() throws Exception {

 // Last 2/3 of the configuration from previous slide

 from("activemq:queue:IncomingMessages")

 .choice()

 .when().el("${in.header.html}")

 .to("velocity:templates/HTMLMessage")

 .to("activemq:queue:OutgoingMessages")

 .when().el("${!in.header.html}")

 .to("velocity:templates/TextMessage")

 .to("activemq:queue:OutgoingMessages");

 from("jmswithtx:queue:OutgoingMessages")

 .to("http://mailservice.com/sendMail")

 .to("bean:handleMailServiceResponse");

 }

}

Messaging Configuration Excerpt

<beans ...>

 <camelContext id="camel">

 <!-- Specify DSL packages here -->

 </camelConxtext>

 <bean name="jmxwithtx"

class="org.apache.activemq.camel.component.ActiveMQComponent">

 <property name="brokerURL" value="tcp://foo.com:61616" />

 <property name="transacted" value="true" />

 <property name="transactionManager" ref="tm" />

 </bean>

</beans>

Multiple Business Partners

! From an integration project:

– Data received from multiple business partners in
varying ways

! XML over FTP, CSV over HTTP, XLS over e-mail

– Data must be converted to canonical format and
posted to a JMS queue

! Gets sent to an accounting system

– A JMS response must be received, formatted, and e-
mailed to the partner

Modeling the Business Partners

! Step 1: receive data

– Set up a route for each partner

! Use the File component to look for FTP files

! Use the Jetty component to receive HTTP files

! Use the Mail component to receive unread messages from
a POP or IMAP mailbox

– The route should send the data to the next step for
format conversions

Modeling the Business Partners

! Step 2: format data

– Define the canonical format as a set of JAXB POJOs
mapping to the canonical XML format

– Set up a route for each partner, with a JavaBean that
converts the input format to the JAXB POJOs

! Camel can autoconvert CSV to Java objects

! Could use POI to process the XLS

– Use the automatic JAXB type converter to turn the
POJOs into an XML document

– Or just use XSLT to convert XML input

Modeling the Business Partners

! Step 3: Deal with accounting system

– The message is now in XML format, easy to send to
a queue

– Set up another route to handle responses from the
response queue

! Send it to a bean to do the processing and extract any
needed parameters, including a message header for the
destination partner

! Route to a different path based on the partner

! Then to a Velocity template to format the response e-mail

! Then to an SMTP component to send the mail

Business Partners in Camel

(auto type
converter)

JAXB
marshaller

Response
queue

File
Component

CSV
HTTP

Jetty
Component

XSLT
template

JMS
queue

XLS
e-mail

POJO uses
POI to write
JAXB beans

POJO writes
JAXB beans

XML
FTP

IMAP
Component

POJO
Routing

expression

Velocity
template

Velocity
template

Velocity
template

SMTP
component

SMTP
component

SMTP
component

Partners Configuration Excerpt

<beans ...>

 <camelContext id="camel"

 xmlns="http://activemq.apache.org/camel/schema/spring">

 <!-- The route for CSV Input -->

 <route>

 <from uri="jetty:http://localhost:5000/CSVInput"/>

 <unmarshal><csv/></unmarshal>

 <to uri="bean:CSVConverter"/>

 <marshal><jaxb prettyPrint="true" /></marshal>

 <to uri="activemq:queue:ToAccounting"/>

 </route>

 </camelConxtext>

 <bean name="CSVConverter" class="com.xyz.CSVConverterBean"/>

</beans>

Testing the CSV Route

@ContextConfiguration(locations = "/CSVInputTest-context.xml")

public class ExcelInputTest extends AbstractJUnit38SpringContextTests {

 @Autowired

 protected CamelContext camelContext;

 protected ProducerTemplate<Exchange> template;

 protected void setUp() throws Exception {

 template = camelContext.createProducerTemplate();

 }

 public void testCSVConversion() throws InterruptedException {

 MockEndpoint finish = MockEndpoint.resolve(camelContext, "mock:finish");

 finish.setExpectedMessageCount(1);

 InputStream in = ExcelInputTest.class.getResourceAsStream("/input.csv");

 assertNotNull(in);

 template.sendBody("direct:CSVstart", in);

 MockEndpoint.assertIsSatisfied(camelContext);

 assertEquals(Invoice.class, finish.getExchanges().get(0).getIn().getBody

().getClass());

 }

}

Camel Concerns

Crash & Recovery

! If the JVM goes down, any exchanges in process
are lost

– A transaction manager can recover in-flight
transactions

– However, only a few of the components support
transactions (though they use the Spring TX
Manager, so e.g. a Spring Bean could hook in)

! Could put e.g. persistent JMS queues or DB calls
between steps in a process?

! Could actually use interceptors to store state of
in-flight exchanges?

Deployment

! Camel itself does not support deployment, hot
deployment, or redeployment

– A CamelContext can be started or stopped, but it has
to be something outside of Camel that does it

! Spring does not have a deployment model either

! May look to Spring DM, ServiceMix 3, ServiceMix
4 Kernel + OSGi, or a Spring app deployed in
Tomcat or some other container

Camel Deployments

Deploying Camel Routes

! Due to the deploy/redeploy issue, Camel routes
should typically be deployed in some other
container for production

– ServiceMix

– Spring DM

– Spring + Tomcat

– etc.

! All of these can take a Spring config file as the
configuration format

Testing Camel Routes

! The same Spring config file can be used in unit
tests

! May want to separate component definitions from
routes so that tests can use different component
configurations (e.g. in-VM ActiveMQ)

! Also extensive support for mock destinations for
testing, though it may be harder to use the exact
route definitions that way

– But remember, you can redefine the activemq: or
other scheme to use the mock component!

Building Camel App Modules

! Extensive Maven support

– camel-maven-plugin can run artifacts in Camel, as
well as generating visualizations of the routes as part
of the Maven docs

– maven-bundle-plugin can build OSGi bundles,
including bundles holding Camel routes

– jbi-maven-plugin can build JBI service units and
service assemblies, including Camel service units

! But all of these formats are zip/jar based at heart,
so the regular Maven JAR build works fine too

Camel Versions

Camel Releases

! 1.6.0 is the current release, with significant
improvements over the early 1.x releases

– It's built against Spring 2.5

! 2.0 is the next upcoming Camel release

! ActiveMQ 5.2.0 includes Camel 1.5.0 but you
can run it fine with Camel 1.6.0 instead

! ServiceMix 3.3 includes Camel 1.4.0

! The ServiceMix 4.0 kernel can run Camel OSGi
bundles

Camel Libraries

! Even the packages that “include” Camel may
only include camel-core and maybe camel-jms

! Be prepared to add other Camel JARs for
scripting support, various components like the
scheduler, test base classes, etc.

! Those Camel JARs depend on third-party JARs
for the actual script engines, scheduler services,
etc.

– Though Maven takes care of this for you

Bundling Camel

! Camel is still pretty lightweight

– camel-core-1.6.0 is under 1 MB

– camel-core and all 40+ other camel-* JARs are
around 2 MB total

! But ActiveMQ and Quartz and scripting engines
and so on will potentially add a noticeable
amount

! Still, much lighter than your average ESB or
integration server product

Q&A

