
© Copyright 2009

GSI Commerce® and the gsi commerce® logo are trademarks, service marks, registered trademarks, or registered service marks of GSI Commerce, Inc. or its subsidiaries or affiliates. Other trademarks contained in this presentation are the property of the respective
companies with which they are associated.

This presentation is for informational and discussion purposes only and should not be construed as a commitment of GSI Commerce, Inc. or of any of its subsidiaries or affiliates. While we attempt to ensure the accuracy, completeness and adequacy of this presentation,
neither GSI Commerce, Inc. nor any of its subsidiaries or affiliates is responsible for any errors or will be liable for the use of, or reliance upon, this presentation or any of the information contained in it.

The information contained in this presentation is subject to change without notice. This presentation contains proprietary and/or confidential information of GSI Commerce, Inc., its subsidiaries or affiliates and is released only under the terms of the non-disclosure
agreement between our respective organizations. Unauthorized use, disclosure or dissemination of this information is expressly prohibited.

Steve Buzzard

Principal Architect, GSI Commerce

March 27th, 2009

from applications to services
as natural as the move from albums to ‘itunes’

a service-oriented state of the union at gsi commerce

but first, for something completely different …
Monty Python’s The Architect

� MR. TID: Gentlemen, we have two basic suggestions for the design of the residential
block of apartments, and I thought it best the architects themselves came in to explain the
advantages of both designs. Mr. Wiggin will be first. Mr. Wiggin?

� MR. WIGGIN: Thank you. Good morning, gentlemen. As you can see, this is a twelve-
story block combining classical neo-Georgian features with all the advantages of modern
design. The tenants arrive in the entrance hall here, are carried along the corridor on a
conveyor belt in extreme comfort and past murals depicting Mediterranean scenes,
toward the rotating knives. The last twenty feet of the corridor are heavily soundproofed.
The blood pours down these chutes and the mangled flesh slurps into these large
containing … eh, yes?

� CITY GENT #1: Uh, did you say 'knives'?

� MR. WIGGIN: Rotating knives. Yes.

� CITY GENT #2: Are you, uh, proposing to slaughter our tenants?

� MR. WIGGIN: Does that not fit in with your plans?

� CITY GENT #1: No, it does not. We wanted a... simple... block of apartments.

� MR. WIGGIN: You see, I mainly design slaughter houses.

� CITY GENT #1: Yes. Pity.

� MR. WIGGIN: Mind you, this is a real beaut! None of your blood caked on the walls and
flesh flying out of the windows inconveniencing passers-by with this one. I mean, my life
has been building up to this.

� CITY GENT #2: Yes, and well done – err … but we did want a block of apartments.

gsi commerce’s service oriented state of the union -
an unfinished drama told in six acts

�Awareness

� Diversity of Feature Demand is a Scalability Concern Too!

� Enlightenment

� From albums to ‘itunes’

� Moving the Focus from Applications to Services

� So the customer can build what they need when they need it

� In case they need a slaughterhouse when you offer a webstore ☺

� Enlightenment’s Challenges

� Operational Complexity

� The Protagonist

� GSI Commerce

� The Antagonist

� Multi-Dimensional Growth

� The Conflict

� Scaling Usage while Satisfying Feature Demand

Feature

Demand
Usage

gsi commerce at a glance

� Dedicated to supporting 3rd party eCommerce businesses

since 1999

� 4000+ employees across the organization
� Headquarters in King of Prussia, PA

� Offices in CA and VA and in Barcelona, Spain (Europe HQ) and the UK

� Three Distribution Centers in KY and another in VA

� Customer Care Centers in WI, GA, VA, and FL

� Fully redundant data centers in VA and NJ

� Provide solutions through our integrated eCommerce

platform
� World class, highly scalable technology platform

� Logistics and customer care

� Marketing services

� Publicly traded on NASDAQ (“GSIC”)

gsi commerce’s corporate history -
with an emphasis on growth

1999

2000

2001

2002

2003

2004

2005

2006

Global Sports, Inc.
Founded in 1999
by CEO Michael Rubin in
King of Prussia, PA

Launched 5 Sporting Goods
Sites

Opened fulfillment center
in KY

Infrastructure scaled to
support growth

Added partners in
entertainment

Redundant data
centers

Changed name to
GSI Commerce, Inc.

40+ partners Entered home vertical

Opened call center in FL

Entered apparel vertical

Entered jewelry vertical

Opened 2nd call center in
WI

Over 4 billion page views

2007

Additional warehouses
and customer service
locations opened in US

$1.7B in transactions
through the platform

2008

Acquired Zendor in the
UK

Acquired Aspherio in Barcelona,
Spain

Acquired

Acquired Significant international
focus & investment

Over $2B in transactions
Over 25.8M orders
Over 19.7B page views
Over 1.5B visitors
Over 305K Cyber Monday orders

we have certainly grown in transaction volume …

+

5 sporting goods partners > 85+ partners in 15 categories

Categories
Apparel, Accessories

& Footwear

Appliances & Tools

Baby Products

Cosmetics &

Fragrances

Consumer Electronics

Entertainment Media

General Merchandise

Gifts

Home Furnishings

Jewelry

Pets

Personal Care

Specialty Foods

Sporting Goods

Toys & Video Games

� Small number of Sporting Goods Stores

� We did everything for each store

� We owned the inventory for all stores

� The Webstore Application satisfied pretty much
any demand

1999 2008

� Sporting Goods became “All Kinds of Things”

� “We do everything” became just one of many partner models

� Partner needs and desires had become increasingly sophisticated

� By 2006, scalability needs had expanded not just in terms of size but perhaps

most of all in functional diversity

Categories
Sporting Goods

… but even more in diversity and capability demand

gsi commerce ecommerce platform history -
scaling to meet traffic growth, but something was missing …

� This scaling solved the “we’re getting a lot more traffic to
the webstore” problem

� We added catalog and content management tooling to help
solve the “our partners want more control” problem

� We were then confronted with the “we build our own applications too and need
access to your capabilities programmatically” problem

� Continuing to add applications to satisfy each flavor of each partner need

would itself clearly not scale

DB DB DB DB
DB DB DB DB

DB DB DB DB
DB DB DB DB

DB DB DB DB
DB DB DB DB

DB DB DB DB
DB DB DB DB

1999

2000

2001

2002

2003

2004

2005

2006

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore
Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore

Webstore
Webstore
Webstore

Catalog/
Content ToolsCatalog/

Content Tools

Catalog/
Content ToolsCatalog/

Content Tools

OMS, WMS

OMS, WMS
OMS, WMS

OMS, WMS OMS, WMS

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

Webstore

DB DB DB DB

DB DB DB DB
DB DB DB DB DB DB DB DB

DB DB DB DB

Data
Center

Data
Center

Data
Center

Data
Center

Data
Center

Sun/Solaris

HP/RH Linux

Sun/Solaris

Sun/Solaris Sun/Solaris
Sun/Solaris

HP/RH Linux HP/RH Linux HP/RH Linux

AS/400

AS/400

AS/400

AS/400

AS/400

CRM

SHOPPING DELIVERY & SERVICETRAFFIC

Marketing

Channel Integration Customer Service

CustomerDashboard SalesMulti-channel mktg In-store integration

E-mail

Catalog syndication

Self service

B2B

On-line

Order Placement

Warehouse

Value-added

Partner-support

Shipping

Reverse logistics

Drop-ship

ServiceReal-timeCampaign

Features

Catalog Inquiry

A
N
A
L
Y
T
IC
S

S
U
P
P
O
R
T

C
O
R
E
 P
R
O
C
E
S
S
E
S

Navigation

PricingContent

Promotions Planning

Assortment

Order review

Status & processing

Inventory mgmt

Business Intelligence & Analytics

awareness -
our logical services …

Storefront
Order Fulfillment

Search

Payment

Customer

Merchandising
& Catalog Mgmt

CRM

SHOPPING DELIVERY & SERVICETRAFFIC

Marketing

Channel Integration Customer Service

A
N
A
L
Y
T
IC
S

S
U
P
P
O
R
T

C
O
R
E
 P
R
O
C
E
S
S
E
S

Fulfillment

JDA MMS

JDA MMS

Merchandising
& Catalog Mgmt

Storefront

Webstore

Application Catalog, Content

Management &

Merchandising

Applications

Order Mgmt

System

Warehouse Mgmt

Systems

Transportation

Mgmt Systems

Emailing Systems

Customer Service Apps
Customer Service ApplicationCatalog Circular Tool

In-Store Pickup Integration Apps

ETL Applications

Analytics Applications

Reporting Applications

Analytics

Apps

Cross Sell

Apps

Additional

Marketing

Apps

…were locked within our applications and systems –
impeding our ability to scale in diversity of feature demand

Order

� Albums (CDs) are much like applications
� The good ones are classic but they’re rarely exactly what you want

� Albums in the 1960s were like Web Applications in the 1990s
� If you only liked some of its songs (features), you lived with the rest

� The 1970s, 80s, and 90s brought about more choice in music …
� Everyone had “awesome mix” tapes, but they were time consuming to make

� Walkmans made you mobile - CDs made your music collection much easier to manage

� Toward the end of this era, the MP3 began its ascent, mainly with the techie crowd

� Likewise, Web Applications in early 2000-2002 involved more choice
� Web Services appeared and the read-only web became a bit more read-write

� Consumers (and clients/business partners) were getting more savvy

� Then … BAM! Apple brought digital music delivery to the mainstream

� POW! The groundswell of the Participatory Web brought an avalanche

of services not just on the web but of the web

� Now, ‘traditional’ Web Applications (and Albums/CDs) are still with us
� But it’s the service (the digital song) that is becoming the mainstream delivery vehicle

� The playlist (the service based application) is your (customer’s) perfect album (application)

� Services aren’t as far along on this journey, but they’ll quickly catch up

� If the digital song is the service, iTunes is its most successful

service registry
� Certainly not the only one (Napster, Amazon, givembeats, etc.) but to most it is

� It’s also a ‘mashup’ editor (in a couple of senses!), a BPM tool, a browser

the dawn of enlightenment –
from albums to ‘itunes’ (or how a good thing became better)

we first exposed services directly from our webstore –
many square pegs from a decidedly application-specific round hole

� Some applications, like our Webstore, are more like Concept Albums

� Meant to be used (listened to) as a whole – like the Who’s ‘Tommy’

� Sometimes containing application context (voice over, thematic backing tracks)

� Containing songs are often very different from the versions released as ‘singles’

� Services are simply songs we want/need for our own playlist

� As consumers, we may not want the presentation/concept (we likely either have
our own or want none at all) – maybe we want the ‘single’ version

� Extracting Services requires knowledge of the Application

� Not simply by the provider but by the consumer as well

� “The songs are trapped in their conceptual album window dressing”

� From an operational perspective, this compromise between service

and application has repercussions

� Configuration/set-up for one that likely doesn’t apply to the other

� Monitoring, management, and tuning applied to one can negatively affect the
other

� It was clear the Webstore would need change to consume our

services, not contain them

� We needed to separate the services from the application – people needed both
but they didn’t need a hybrid

I just want the most active

products today – no

presentation please!

I just want the

‘singles’ -

no voice overs!

Webstore Application

Partner BPartner A Partner C Partner D

Catalog

Catalog
Order

Promotion

Catalog

Pricing

Payment

Shipping

Account

Order

Promotion

Catalog

Catalog
Catalog

Fulfillment
Catalog

Catalog OrderPayment

Promotion

Catalog
Pricing

Order

Payment

Catalog
Account

Account

CatalogPaymentCatalog

we needed to free the services from the webstore …
… along with their underlying components

Partner A Partner B Partner C Partner D

Platform Services

Platform business

logic

Partner-specific

Business Logic

Page Navigation
Input Validation

Presentation
Page Layout

we needed a strategy –
balance applications with components and services

starting with the webstore

� Decompose the Webstore into Components

� Start with the Catalog components (Products,
Categories, etc.)

� Continue with Orders, Customers, Payment, etc.

� Factor out Foundational Component Capabilities
� Persistence support, Configuration, Instrumentation, etc.

� Components have contracts with consumers too
� Can be tested standalone, and change impact can be better isolated

Webstore
Applications

catalog

Inquiry

Service

Merchandising

Applications

Order Placement
Service

Catalog Customer Order Payment Foundational
And so on ...

And so on …

� Design the Service Contracts
� Logical Resources, Representations and Messages
� SLAs
� Security Concerns
� Community Concerns

� Construct the Services
� Using the underlying components when available

� Refactor the Services
� The implementation to use components if appropriate
� The interface based on consumer feedback

� String theory aside, physicists have yet to unify general

relativity & quantum mechanics …

� … so why do we so often think one size fits all with software?

� REST and Messaging for Distributed Services: “the large”

� Coarse Grained

� Data centric

� The request/reply payloads as the engine of application state

� Stateless between service requests

� Naturally Resource Oriented

� Domain Driven Design for Objects & Components: “the

small”

� Naturally tightly coupled clusters of classes making up the
implementation is object oriented

� Behavior-centric, rather than state/resource centric

� Often stateful

� Relatively fine grained

� Often exposing rich sets of operations

digging deeper -
distinct design approaches were needed for the large and the small

Resource Oriented

Component-based

Object-oriented

the large –
service oriented design at gsi commerce

� A Consumer Says “Give me product details on Plasma TVs”
� Procedural

• Product.getDetails(ProductType.TELEVISION, ProductSubType.PLASMA,
“Radioshack”)

� RESTful
• GET /store/radioshack/catalog/television/plasma?type=detail

� Messaging
• <ProductDetailRequest><Store>RadioShack</Store>…

� What’s more Natural? More Practical? Depends on the consumer!

� For Distributed Services, Messaging and RESTful HTTP are generally
our first choice

� Services whose primary consumers are “of the Web” seem to naturally
think in RESTful terms

� AJAX, Flash
� Generally talking via JSON
� Rarely use SOAP (SOAP isn’t usually very RESTful)

� Integration Services naturally communicate via Messaging
� Generally talk via XML
� May use SOAP (in which case, please, doc/literal)

� Messaging can be RESTful
� Atom feeds are a good example

� We provide SOAP for those who need it
� Usually server-side/integration scenarios

� Security? Good old SSL when its needed
� Usually with an API key for external consumers so we can track usage
� WS-Security for partners and clients that need it: useful for integration collaborations

REST

Resources
{unconstrained}

Such as:
http://www.store.com/catalog/boardgames/productid/12345

The Uniform
Interface

{constrained}
Exactly:

GET, PUT, POST,
DELETE, HEAD

Specific
Content types
{constrained}
Such as:

application/json

& text/xml

JAX-RS/

Jersey

Mule ESBProgramming

with the Web –

not against it

� Design
� Domain Driven Design as overarching philosophy

� Extensibility Principles

• Extend Service, Domain and Repository behavior via Interface
Inheritance, Delegation and Composition

• Push Extensibility outward toward (and to) the client

• Annotate All Extensibility Points

� Maintainability Principles

• Streamline Associations

• Streamline State

• Streamline Implementation Inheritance

• Streamline Visibility

• Streamline Mutability

• Annotate Concurrency Semantics

• Unit Tests for virtually everything and anything

� Technologies
� Spring DI for decoupling dependencies

� DAOs with Spring JDBC Templates

• Initial component-based persistence encapsulation

• Focus was on solidifying component responsibilities and boundaries

• Looking now at full OR/M solution as next step

� Spring Modules AOP-based Caching

• Allows multiple cache implementations to be plugged in

• Cacheable Aspects on CRUD operations of our Entity Repositories

• EHCache is our current cache provider (local cache/overflow to disk)

� Spring Security

� Future Directions
� OSGI

� Complete Object/Relational Mapping (OR/M) Solution

� Distributed Caching

the small –
component based development at gsi commerce

a big bang approach to services did not make sense …
… so we needed an integration solution

� We identified our integration needs as we grew our

service ecosystem

� Service Interface Translation to support our divergent partner
desires without it bleeding into the core of our platform

� A way to expose “legacy” capabilities as services until we could
get to componentizing them (or because it makes no sense to
componentize them)

� A way to compose aggregate services from discrete ones

� A way to abstract a heterogeneous smorgasbord of backend
integration solutions

� The name Enterprise Service Bus (ESB), like SOA,

ceases to have much meaning these days

� We simply needed a good integration solution

� Mule ESB gave us just what we needed without giving

us a lot of vendor baggage

� Its event driven model, based on Enterprise Integration Patterns,
was familiar and intuitive

� Its integration with Spring was nice as well

� It could be used as an ESB but also simply as an embeddable
integration framework

Webstores

AS/400

Order Mgmt System
Warehouse Mgmt System
Merchandising System

Web 2.0
Clients

Mule ESB

catalogorder

cart

Partners

CRM

the logical …

Extension Points

… and the physical

the downside of services?
two words: operational complexity

� We deploy releases for over 85 partners every two weeks

� We have a large number of projects with significant
changes flowing through development, integration, QA, and
UAT environments at any given time

� We have 100s of machines and many 100s of application
server instances across two data centers for production roll
out

� 95% of all of this activity is driven by what is primarily one
application we all know very well: the Webstore

� Once we cracked open the Webstore and decomposed its
parts into services, we gave birth to new deployment units
that were most decidedly not web stores

� The Enterprise Service Bus helps hide this complexity from
Service Consumers but not from administrators and release
managers

webs
tore

webs
tore

webs
tore

webs
torewebs

tore

serv
ice

webs
tore

webs
tore

webs
tore

webs
tore

webs
tore

Ser
vice

how do we tackle this complexity?
policies applied through automation through service lifecycle …

Mule ESB, Mule HQ,

Ganglia, Nagios,

JManage

• All components have associated JMX beans, for runtime production behavioral analysis
Production Monitoring and

Management

Gomez• All E-Commerce Web Capabilities, including our Web Services, are continuously monitored and measured at
numerous locations across the internet

SLA Compliance

GSI Configuration

Management Engine • Services are capable of configuring & deploying themselves using the standard script-driven engine
Deployment

Code and Module Structure

Versioning

Documentation

Code Coverage

Continuous Integration

Build

Request Tracking

Source Code Management

Policy

Maven, Checkstyle,

Cobertura
• Services & Component Implementation Idioms & Project Module makeup meet GSI Minimum Application
Requirements

Nexus, Mule Galaxy

Repository
• Component versions that are QA passed are published to the Maven Release Repository

• Versioned Service Metadata is auto published to Mule Galaxy Repository

Confluence, Mule Galaxy

Repository • Components & Services have supporting rollout/usage documentation, published to Mule Galaxy

Cobertura, JUnit• Components and Services have 90% Unit test coverage

Bamboo• Components & Services have Continuous Integration plans for each scheduled version

Maven• Components and Service have a Maven build that implements site, install, and test targets

JIRA• Component and Service has Issue Tracking System to manage requests

Subversion• Component and Service Source Control – Single Component Library / Single Module

Managing SystemRequirement

service governance -
… but policies must be baked into daily practice

daily practice – the process
agility under the waterfall

� Deliverables, Resource/Time Estimates and major

milestone artifacts are agreed upon for each release

� Formal backlog of tasks prioritized based on this

� Each release project has macro-level waterfall phases

� Requirements, Design, Implementation and Test

� Each phase ends with formal release of agreed upon deliverables

� Each phase in turn consists of a series of iterative, two

week sprints

� Each sprint involves tasks with elements of requirements, design,
implementation and test

� The relative focus on each varies based on the phase

� Culminating with demonstrations to the business stakeholders

� The sprint deliverables must be production ready

� We have a strict definition of what ‘done’ means

� Management, development, test, requirements &

architecture members all actively involved in each sprint

� Focused on peer review, refactoring and, above all, tests

� You need to evolve not only capabilities but the way those

capabilities are exposed

� Scalability exists at multiple dimensions

� Functional diversity has scale as well

� Decompose your …

� Capabilities into components

� Compose your …

� Components into Services

� Allows you to …

� Quickly construct applications needed for the masses

� Give partners building blocks for the apps they need now
• Give them iTunes in addition to Albums!

� But be sure you …

� Automate the build-test-provision/deploy cycles

� Are relentless in refactoring

� Are fanatical about consistency
• It reduces technical debt

• It slows the architectural decay

� And it never hurts to say too much …
• Test, Test, Test

• Automate, Automate, Automate

summary

webstore merchandising analytics

Core Services &

Components

GSI Applications & Partner-specific Services

catalog

inventory

order

search

promotion

fulfillment

catalog

payment

customer

catalog

promotion

search

cart

Webstore App

cart

inventory

shipping

fulfillment

returns

customer

payment

order

analytics

content mgmt

Management

App

catalog mgmt

a partner application

another partner application

thanks for listening!

questions?

mailto: buzzards@gsicommerce.com

