
Enter the Elephant
Massively Parallel Computing With Hadoop

Toby DiPasquale
Chief Architect

Invite Media, Inc.

Philadelphia Emerging Technologies for the Enterprise
March 26, 2008

http://hadoop.apache.org/core
http://hadoop.apache.org/core
mailto:toby@cbcg.net?subject=Re:%20Enter%20the%20Elephant
mailto:toby@cbcg.net?subject=Re:%20Enter%20the%20Elephant
http://www.invitemedia.com/
http://www.invitemedia.com/

Image credit, http,//www.depaulca.org/images/blog_1125071.jpg

http://www.depaulca.org/images/blog_1125071.jpg
http://www.depaulca.org/images/blog_1125071.jpg

How would you get counts of
all the distinct words...

...in a file?

...in a directory?

...on the World Wide Web?

I got an idea...

Lets shove all the pages into
Oracle!!!1!

Image credit, http,//www.uncov.com

http://www.uncov.com
http://www.uncov.com

We need a new paradigm

What does Google do?

Google’s Infrastructure

Distributed filesystem (GFS)

Distributed execution framework (map/
reduce)

Query language (Sawzall)

Distributed, column-oriented datastore
(Bigtable)

Machine learning (interns)

Wait...

...I don’t work for Google.

Yahoo! to the rescue...

Enter Hadoop

Distributed filesystem (HDFS)

Distributed execution framework
(MapReduce)

Query language (Pig)

Distributed, column-oriented datastore
(HBase)

Machine learning (Mahout)

Hadoop Distributed
Filesystem

Cluster filing system

Designed for huge files (many GBs)

Designed for lots of streaming reads and
infrequent writes

Not a POSIX filesystem, requires client help

Files on HDFS

Files consist of an ordered series of blocks
and some metadata

Block data is distributed across DataNode
machines

NameNode maintains filesystem metadata
and list of blocks

Blocks

Blocks are replicated)=3 times (admin
configurable)

Blocks are regular files on DataNode
machines*

Default block size is 64MB

(*) Or Amazon S3 objects, if you’d prefer

Image credit, http,//hadoop.apache.org/core/docs/current/hdfs_design.html

http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html

Keep these blocks in mind...
they become important later.

Wait...

...what am I supposed to do
with all those huge files?

Image credit, http,//icanhazcheezburger.com

http://icanhazcheezburger.com
http://icanhazcheezburger.com

MapReduce

MapReduce serves that need

Constrained programming model

Data parallel

Lifted from functional programming

Phases of MapReduce

Initialization

Map

Shuffle

Sort

Reduce

Initialization

Mappers and Reducers are allocated

Code is shipped to nodes

Mappers and Reducers are run on same
machines as DataNodes

Map

Mapper takes input key/value pair

Does something to its input

Emits intermediate key/value pair

One call per input record

Fully data-parallel

Shuffle

Intermediate data from Mapper is copied
to Reducer machines

All data for a partition goes to same
Reducer

Triggered when a Mapper completes

Sort

Sort intermediate data by key

All records for key are then contiguous

Can’t start until all Mappers are finished

Reduce

Input is all list of intermediate values for a
given key

Reducer aggregates list of intermediate
values

Yields a final key/value pair for output

Partitioning

Intermediate keys are partitioned by user-
defined function

Used to route intermediate data to
particular Reducer instances during
Shuffle

Clever workaround for non-data-parallel
nature of reduce()

Mayhap an example...

WordCount Input
“Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est
laborum...”

public static class Map extends MapReduceBase implements Mapper {
 public void map(WritableComparable key,
 Writable value,
 OutputCollector output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {
 Text word = new Text(tokenizer.nextToken());
 output.collect(word, new IntWritable(1));
 }
 }
}

WordCount Mapper

WordCount Intermediate
(in, 1)
(in, 1)
(sunt, 1)
(in, 1)
(elit, 1)
(sed, 1)
(eiusmod, 1)
(dolore, 1)
(enim, 1)
(eu, 1)
(dolore, 1)
(et, 1)
(labore, 1)
[...]
(adipisicing, 1)
(incididunt, 1)
(reprehenderit, 1)

public static class Reduce extends MapReduceBase implements Reducer {
 public void reduce(WritableComparable key,
 Iterator values,
 OutputCollector output,
 Reporter reporter) throws IOException {
 int sum = 0;

 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}

WordCount Reducer

WordCount Final
(ad, 1)
(irure, 1)
(in, 3)
(ea, 1)
(officia, 1)
(sunt, 1)
(elit, 1)
(sed, 1)
(eiusmod, 1)
(enim, 1)
(eu, 1)
[...]
(aute, 1)
(Duis, 1)
(dolore, 2)
(mollit, 1)

Applications of
MapReduce

Log processing

Web search engines

Data mining

Machine learning

Scientific retrieval and processing

Lots more you can think of

Downsides to M/R

Map and Reduce work best when side
effect-free

Requires programming to query datasets

Will have to write multiple M/R jobs to do
more complicated processing

Wait...

...that seems like an awful lot
of coding.

Solution, DSL

Pig Latin

DSL for data processing on Hadoop

Compiles down to MapReduce jobs

Somewhat similar to SQL (relational)

Supports doing ad-hoc queries

Doesn’t require (as much) programmer time
for analysis and processing

WordCount in Pig

A = LOAD ‘input’ USING TextLoader();
B = FOREACH A GENERATE FLATTEN(TOKENIZE
(*));
C = GROUP B by $0;
D = FOREACH C GENERATE group, COUNT(B);

GROUP output
...
(do, {(do)})
(dolor, {(dolor), (dolor)})
(dolore, {(dolore), (dolore)})
(ea, {(ea)})
(eiusmod, {(eiusmod)})
(elit, {(elit)})
(enim, {(enim)})
(esse, {(esse)})
...

Output
(ad, 1)
(irure, 1)
(in, 3)
(ea, 1)
(officia, 1)
(sunt, 1)
(elit, 1)
(sed, 1)
(eiusmod, 1)
(enim, 1)
(eu, 1)
[...]
(aute, 1)
(Duis, 1)
(dolore, 2)
(mollit, 1)

Pig Features

Supports equi-join and inner join

Operators, FILTER, FOREACH, GROUP

Binary operators, COGROUP, CROSS, UNION

Loads TSV and plain text

Downsides to Pig

Pretty young

Still in incubator stage as Apache
project

Subject to big changes

Light on built-in functionality

Wait...

...I still need to query stuff
fast sometimes.

Geez, you guys want
everything

HBase

Built on top of HDFS

No schemas (yay!)

Column-oriented datastore

Allows arbitrary columns per row

No space penalty for NULL columns

Conceptual View

Image credit, http,//wiki.apache.org/hadoop/Hbase/HbaseArchitecture

http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture
http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture

Physical View

Image credit, http,//wiki.apache.org/hadoop/Hbase/HbaseArchitecture

http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture
http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture

HBase API

Use HBaseAdmin to manipulate tables

Use HTable to manipulate table data

Use HScannerInterface to scan a table

Downsides of HBase

Not as feature-packed as traditional
RDBMS

Known to have been unstable as of yet

Powerset is working hard on this one

Michael Stonebraker doesn’t want you to
use it

http://www.powerset.com/
http://www.powerset.com/

Wait...

...I don’t have the sk1llz to
code that fancy machine

learning stuff.

Mahout

Project to implement machine learning for
MapReduce

Statistical and machine learning tools

Powered by grad students on the Intertron
and some Yahoo! people

Mahout Goals

High-performance, distributed matrix (both sparse and dense)

Clustering (Canopy, K-Means, Mean Shift, etc) with distancing (Manhattan, Pearson, Tanimoto, etc)

Naive Bayes classification and Bayesian network

Backpropogation (Neural Network)

Expectation Maximization (e.g. Probabilistic Latent Semantic Indexing)

Locally-Weighted Linear Regression (LWLR) and logistic regression

Support Vector Machine

Gaussian Discriminant Analysis

Singular Value Decomposition, Principal Components Analysis, Independent Component Analysis

Downsides of Mahout

Super-ultra-mega new

Only some clustering algorithms even
implemented at this time

Still some confusion as to who’s doing
what

Hadoop Cons

Hadoop doesn’t play well with existing
tools

Latency is high; real-time needs beware

Your DBAs will suck at it in the beginning

Hadoop Pros

Process large data very efficiently

Very flexible

Shared-nothing scalability

Simple API and model

Hadoop and Amazon EC2 fit together like
chocolate and peanut butter

Bottom Line,

If you have large data, you
should be looking hard at

Hadoop.

Image credit, http,//icanhazcheezburger.com

http://icanhazcheezburger.com
http://icanhazcheezburger.com

Links

http,//hadoop.apache.org/core/

http,//wiki.apache.org/pig/

http,//hadoop.apache.org/hbase/

http,//lucene.apache.org/mahout/

http://hadoop.apache.org/core/
http://hadoop.apache.org/core/
http://wiki.apache.org/pig/
http://wiki.apache.org/pig/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/
http://lucene.apache.org/mahout/
http://lucene.apache.org/mahout/

