
Django As A Second Language

Eric Snyder
Chariot Solutions



Who Is Django?

● Superb jazz guitarist
● 1910 – 1953
● Member of The
Quintet Of The Hot
Club Of France



What Is Django?

● Python based web framework. A dynamically
typed, interpreted language (like Ruby).

● MTV (Model Template View) – really MVC
(like Rails).

● 'Fat model' model (like Rails).
● Originated from a 'real world' application
(like Rails).



What Is Rails?

● Ruby based web framework. A dynamically
typed, interpreted language (like Python).

● MVC (like Django).
● 'Fat model' model (like Django).
● Originated from a 'real world' application
(like Django).

● Emphasizes 'Convention Over Configuration'.



Python Philosophy

● Rejects arcane language features.
● Priority on readability over expressiveness.
Whitespace is significant.

● Explicit is better than implicit.
● There should be only one obvious way to do
anything.



Ruby Philosophy

● Has many arcane features. See the splat * for
an example or referencing the eigenclass.

● Not as much emphasis on readability
(IMHO).

● Implicit is ok. There are many examples in
Rails.

● There can be many ways to do the same
thing. This is a philosophy inherited from
Perl.



Riddle Me This – A Ruby
Example
class << self; self; end.send(:define_method, :do_magic)
do |a|
puts "Umm, yeah..."
p a

end



Applications & Projects

● Rails: An application consists of models,
controllers, routing information, templates
and configuration information.

● Django:
– A project consists of configuration information,
some routing info. and one or more applications.

– An application consists of routing info., models,
views (controllers) and templates.



Routing - Rails

Starting w. 1.2 we have RESTful routes
map.resources :teams

teams_path GET /teams index
teams_path(id) GET /teams/1 show
new_team_path GET /teams/new new
teams_path POST /teams create
edit_team_path GET /teams/1;edit edit
team_path(id) PUT /teams/1 update
team_path(id) DELETE /teams/1 destroy



Routing - Django

Map requests to views with regex.
urlpatterns = patterns('',
(r'', include('timetobrew.brewtools.urls')),
(r'^accounts/login/$', 'django.contrib.auth.views.login'),
(r'^admin/', include('django.contrib.admin.urls')),
(r'^brewtools/', include('timetobrew.brewtools.urls')),

)



Django Models

● Explicit declaration of everything, no
introspection.

● Field types can extend beyond the underlying
database datatypes. E.g. URLField,
XMLField, FilePathField.

● Rich set of attributes can be set on a field.
E.g. editable, help_text, unique_for_date.



Rails Models

● Database introspection for attribute metadata.
● By default attribute names are assumed to be
the same as database column names.

● Relationships explicitly specified.
● Rich and robust model level validation.



Django Views

● Controllers and actions. Deal with request
and response.

● Form handling.
– Form level validation.
– Form 'cleaning' of data (conversion).

● Exchange data w. templates via a Context
dictionary.



Django Generic Views

● Common controller patterns abstracted.
– Master/detail.
– Date based drill down.
– Create/Update/Delete.

● No controller code necessary.
● Templates still required.



Rails Controllers

● Controllers and actions. Deal with request and
response.

● Injects controller instance variables into the
template.

● Implicit rendering of like named templates.
● No built-in concept of forms.

– No conversion phase (JSF).
– No form level validation. This complicates model
level validation.



Django Templates

● Block inheritance.
● Simple set of template 'tags'.
● Restricted to simple logic. This is a good
thing.

● Forms can be rendered by simply printing
them. Validationmessages are rendered as
well.



Rails eRb Templates

● Mix ruby code and HTML.
● Can use view helpers which can function like
tags.

● Easily abused.
● Partials – partial pages used to reduce clutter
and enable AJAX requests to replace DOM
elements.



AJAX Support

● Rails: Directly integrated with prototype and
scriptaculous.
– Rails view template helpers generate calls to
prototype functions.

– Can call prototype and scriptaculous functions
directly in Rails RJS templates .

● Django: No AJAX integration (yet).
– Some discussion of Dojo integration.
– Contrary to Django philosophy.



Managing The Schema

● Rails ActiveRecord Migrations
– Manage the evolution of a schema.
– DDL
– DML
– Database agnostic

● Django
– manage.py custom command - execute SQL for a
model, once only

– fixtures – load data from flat files, format is
JSON or XML



Rails Deployment With Mongrel

● Mongrel
– HTTP Server
– Written In Ruby

● Rails is not thread safe.
Each request gets its own
process.

● Could be simpler but
mod_ruby is broken.

● FastCGI is another
alternative.



Django Deployment With
mod_python

● Django is not thread
safe (?) but prefork
MPM means each
request gets its own
Apache process.

● FastCGI is another
alternative.



My Observations

● Django is generally on par with Rails in terms of how
productive you can be.

● Django's philosophy of favoring the explicit over the
implicit is appealing.

● Django is more flexible and less opinionated.
● Django's reluctance to embrace AJAX is a weakness.
● Python's richer set of libraries gives Django an
advantage, especially in the enterprise.

● Django's deployment model is simpler and well proven.


