
 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Spring MVC 2.5 and Beyond

Covering Core Spring MVC and official
Spring MVC Extensions

Rossen StoyanchevRossen Stoyanchev
Senior Consultant, SpringSource

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 2Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

2

Agenda

• Core Spring MVC 2.5
– New @Controller model
– More convention-over-configuration

• The New Spring Web Flow 2.0
– Simplified flow definition language
– Ajax event model
– Full JSF support

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 3

Spring MVC

• Spring MVC is a popular web framework
• Spring MVC is the platform for developing

Spring-based web applications
– All extensions like Web Flow plug into it

• Spring MVC 2.5 greatly simplifies the Controller
programming model through use of
annotations and convention-over-configuration
– “Spring @MVC” has emerged as a catch phrase for

talking about these new features

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 4

@Controller - What is it?

• A new POJO-based “multi-action”
controller model
– With support for processing forms
– Can fully supercede use of the

SimpleFormController and
MultiActionController classes

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 5

@Controller - How Does It
Work?

• Define your Controllers as simple POJO
classes instead of extending from
framework-specific base classes

• Map URLs to action methods using
annotations

• Declare action method arguments to
bind HTTP request data

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 6

Example @Controller

@Controller
public class HotelsController {

 @RequestMapping
 public void index() {…}

 @RequestMapping
 public void search(SearchCriteria criteria,
 BindingResult result) {…}

 @RequestMapping
 public void show() {…}
}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 7

Equivalent Spring 2.0
Example

public class HotelsController extends
MultiActionController {

 public ModelAndView index(HttpServletRequest req,
HttpServletResponse res) {…}

 public ModelAndView search(HttpServletRequest req,
HttpServletResponse res) {…}

 public ModelAndView show(HttpServletRequest req,
HttpServletResponse res) {…}

}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 8

URL->@Controller Method
Mapping

• Mapping is based on the request path
• Can also use the request method
• The strategies for mapping are

– Simple
– Controller Relative
– Externalized Controller Relative
– Convention-based

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 9

Simple

@Controller
public class HotelsController {
 @RequestMapping("/hotels/index")
 public void index() {…}

 @RequestMapping("/hotels/search")
 public void search() {…}

 @RequestMapping("/hotels/show")
 public void show() {…}
}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 10

Controller Relative

@Controller
@RequestMapping("/hotels/*")
public class HotelsController {
 @RequestMapping(method=RequestMethod.GET)
 public void index() {…}

 @RequestMapping
 public void search() {…}

 @RequestMapping(method=RequestMethod.GET)
 public void show() {…}
}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 11

Externalized Controller
Relative

@Controller
public class HotelsController {
 @RequestMapping(method=RequestMethod.GET)
 public void index() {…}

 @RequestMapping
 public void search() {…}

 @RequestMapping(method=RequestMethod.GET)
 public void show() {…}
}

<bean class=“...SimpleUrlHandlerMapping”>
 <property name="mappings">
 <value>
 /hotels/*=hotelsController
 </value>
 </property>
</bean>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 12

Convention Based

@Controller
public class HotelsController {
 @RequestMapping(method=RequestMethod.GET)
 public void index() {…}

 @RequestMapping
 public void search() {…}

 @RequestMapping(method=RequestMethod.GET)
 public void show() {…}
}

<bean class=“...ControllerClassNameUrlHandlerMapping” />

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 13

Action Method Binding

• You can bind HTTP Request data to
action method parameters, including
– Simple parameter types
– Bean parameter types
– Several special parameter types

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 14

Simple Parameter Types

@RequestMapping

public void show(@RequestParam("id") Long id) {…}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 15

Bean Parameter Types

@RequestMapping

public void search(SearchCriteria criteria) {…}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 16

Special Parameter Types

@RequestMapping
public void foo(HttpServletRequest req, …) {…}

@RequestMapping
public void foo(HttpServletResponse res, …) {…}

@RequestMapping
public void foo(HttpSession session, …) {…}

@RequestMapping
public void foo(Locale locale, …) {…}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 17

Special Parameter Types (2)

@RequestMapping

public void foo(Model model, …) {…}

@RequestMapping

public void search(SearchCriteria criteria,

 BindingResult bindingResult, …) {…}

@RequestMapping

public void foo(SessionStatus status, …) {…}

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 18

Selecting Views

• Your controllers can select views to
render
– By convention (the default)
– By returning a view name string

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 19

Selecting a View by
Convention

@Controller
public class HotelsController {

 @RequestMapping

 public void index() {…}

}

• The request path is used as the view name by default
– Assume a request URL of /hotels/index
– The view rendered will be /WEB-INF/hotels/index.jsp
– Customize this convention with a RequestToViewNameTranslator
– Custom default view resolution rules with a ViewResolver

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 20

Selecting a View Explicitly

@Controller
public class HotelsController {

 @RequestMapping

 public String index() { … return “/hotels/index”}

}

• The name of the view to render is returned
• Customize how the view is resolved with a ViewResolver

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 21

Exporting @Controllers

• How do get your @Controller exported
to the web?

• Two techniques
– Explicit bean definition
– Classpath Scanning

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 22

Explicit Bean Definition

<bean class=“...SimpleUrlHandlerMapping”>
 <property name="mappings">
 <value>
 /hotels/*=hotelsController
 </value>
 </property>
</bean>

<bean id=“hotelsController” class=“…HotelsController” />

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 23

Classpath Scanning

<!-- Activates annotation-based configuration -->
<context:annotation-config />

<!-- Scans for @Components to export and configure -->
<context:component-scan base-package=”com.mycompany.app”/>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 24

Demo

• Spring Travel Reference Application
– @Controller usage

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 25

Spring Web Flow

• An official Spring MVC extension for
implementing flows
– “A flow encapsulates a reusable sequence of steps

that can execute in different contexts”

• Web Flow 2 greatly simplifies the flow
programming model
– SWF 2 flows on average 50% smaller than SWF 1

• Web Flow 2 adds major new features
– Comprehensive JSF support
– First class Ajax support
– Spring Security integration
– View scope

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 26

Web Flow Sweet Spot

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 27

Web Flow 2 to Web Flow 1

• Spring Travel Reference App v1
– 163 lines of Flow code across 3 artifacts

• Flow definition, Form Action Class, Bean File

• Spring Travel Reference App v2
– 33 lines of Flow code in 1 artifact

• Savings attributed to
– More concise flow definition syntax
– Enhanced expression language integration
– Declarative view model binding and validation
– Also, a new flow inheritance capability can further

simplify large applications

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 28

Flow Definition Syntax
Compared

Invoking Actions

v2
<evaluate expression="bookingService.createBooking(hotelId)”
 result="flowScope.booking" />

v1
<bean-action bean="bookingService” method="createBooking”>
 <method-arguments>
 <argument value="${flowScope.hotelId}” />
 </method-arguments>
 <method-result name="booking” scope="flow” />
</bean-action>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 29

View Model Binding

v2
<view-state id="enterBookingDetails" model="booking">
 <transition on="proceed" to="reviewBooking" />
 <transition on="cancel" to="cancel" bind="false" />
</view-state>

v1
<view-state id="enterBookingDetails"
 view="enterBookingDetails.jsp">
 <render-actions>

 <action bean="formAction" method=”setupForm" />
 </render-actions>
 <transition on="proceed" to="reviewBooking">

 <action bean=”formAction" method="bindAndValidate" />

 </transition>
 <transition on="cancel" to="cancel" />
</view-state>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 30

Mapping Flow Input/Output

v2
<subflow-state id="bookHotel" subflow="booking">
 <input name="hotelId” />
 <transition on="bookingConfirmed" to="finish” />
</subflow-state>

v1
<subflow-state id="bookHotel" flow="booking">
 <attribute-mapper>
 <input-mapper>
 <mapping source="flowScope.hotelId"
 target="hotelId”
 </input-mapper>
 </attribute-mapper>
 <transition on="bookingConfirmed" to="finish” />
</subflow-state>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 31

Flow Definition Inheritance

parent.xml

<flow abstract="true">

 <!-- Common elements -->

</flow>

child.xml

<flow parent=”parent">

 <!-- Your specific elements -->

</flow>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 32

Spring Security Integration

<flow>
 <secured attributes="ROLE_USER" />
</flow>

• Can also secure states and transitions
• Can refer to user Principal using EL

– Use the currentUser implicit variable
– Resolvable within flow and view templates

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 33

Flow-Managed Persistence

<flow>
 <persistence-context/>
</flow>

• Scopes a persistence context with this flow
• Automatically used by your data access objects
• Can also call the flow’s EntityManager directly

using EL
– e.g. entityManager.persist(booking)

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 34

Ajax with View Scope

<view-state id="reviewHotels">
 <on-render>
 <evaluate expression="service.findHotels(criteria)"
 result="viewScope.hotels" />
 </on-render>
 <transition on="previous">
 <evaluate expression="criteria.previousPage()" />
 <render fragments="hotelsTable" />
 </transition>
 <transition on="next">
 <evaluate expression="criteria.nextPage()" />
 <render fragments="hotelsTable" />
 </transition>
 <transition on="select" to="reviewHotel" />
 <transition on="changeSearch" to="changeCriteria" />
</view-state>

View scope

Partial page rendering

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 35

Popups

<view-state id="changeCriteria" popup="true">

 <transition on="search" to="reviewHotels” />

</view-state>

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 36

JSF Support - “Spring Faces”

• Combines the JSF UI component model with
Web Flow navigation/state management
– All in a native Spring MVC environment

• Spring Faces also includes a lightweight JSF
component library
– Designed for the 80%

• Includes Ajax support, client-side form validation
– Built on a new Javascript module called “Spring.js”

• Integrates Dojo as the primary UI toolkit
• Applies progressive enhancement techniques

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 37

Demo

• Spring Travel Reference Application
– Web Flow usage
– Spring Faces usage
– Spring Security integration
– Progressive enhancement

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 38

Summary

• Spring MVC 2.5 is a great leap forward
– Elegant @Controller model

• Web Flow 2 is also a great leap forward
– Simplified flow definition language
– Groundbreaking work in the areas of Progressive Ajax

and JSF

• Give them a try!
• Get involved in the Spring community at

http://forum.springframework.org
• These slides are also available at

http://blog.springsource.com
– Be sure to subscribe

http://forum.springframework.org/
http://blog.springsource.com/

 Copyright 2008 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 39

Questions?

Rossen.Stoyanchev@SpringSource.com

