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Agenda

• Core Spring MVC 2.5
– New @Controller model
– More convention-over-configuration

• The New Spring Web Flow 2.0
– Simplified flow definition language
– Ajax event model
– Full JSF support
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Spring MVC

• Spring MVC is a popular web framework
• Spring MVC is the platform for developing 

Spring-based web applications
– All extensions like Web Flow plug into it

• Spring MVC 2.5 greatly simplifies the Controller 
programming model through use of 
annotations and convention-over-configuration
– “Spring @MVC” has emerged as a catch phrase for 

talking about these new features
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@Controller - What is it?

• A new POJO-based “multi-action” 
controller model
– With support for processing forms 
– Can fully supercede use of the 

SimpleFormController and 
MultiActionController classes
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@Controller - How Does It 
Work?

• Define your Controllers as simple POJO 
classes instead of extending from 
framework-specific base classes

• Map URLs to action methods using 
annotations

• Declare action method arguments to 
bind HTTP request data



 Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 6

Example @Controller

@Controller
public class HotelsController {

    @RequestMapping
    public void index() {…}

    @RequestMapping
    public void search(SearchCriteria criteria,
                       BindingResult result) {…}

    @RequestMapping
    public void show() {…}
}
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Equivalent Spring 2.0 
Example

public class HotelsController extends 
MultiActionController {

  public ModelAndView index(HttpServletRequest req, 
HttpServletResponse res) {…}

  public ModelAndView search(HttpServletRequest req, 
HttpServletResponse res) {…}

  public ModelAndView show(HttpServletRequest req, 
HttpServletResponse res) {…}

}
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URL->@Controller Method 
Mapping

• Mapping is based on the request path
• Can also use the request method
• The strategies for mapping are

– Simple
– Controller Relative
– Externalized Controller Relative
– Convention-based
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Simple

@Controller
public class HotelsController {
    @RequestMapping("/hotels/index")
    public void index() {…}

    @RequestMapping("/hotels/search")
    public void search() {…}

    @RequestMapping("/hotels/show")
    public void show() {…}
}
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Controller Relative

@Controller
@RequestMapping("/hotels/*")
public class HotelsController {
    @RequestMapping(method=RequestMethod.GET)
    public void index() {…}

    @RequestMapping
    public void search() {…}

    @RequestMapping(method=RequestMethod.GET)
    public void show() {…}
}
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Externalized Controller 
Relative

@Controller
public class HotelsController {
    @RequestMapping(method=RequestMethod.GET)
    public void index() {…}

    @RequestMapping
    public void search() {…}

    @RequestMapping(method=RequestMethod.GET)
    public void show() {…}
}

<bean class=“...SimpleUrlHandlerMapping”>
    <property name="mappings">
        <value>
            /hotels/*=hotelsController
       </value>
    </property>
</bean>
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Convention Based

@Controller
public class HotelsController {
    @RequestMapping(method=RequestMethod.GET)
    public void index() {…}

    @RequestMapping
    public void search() {…}

    @RequestMapping(method=RequestMethod.GET)
    public void show() {…}
}

<bean class=“...ControllerClassNameUrlHandlerMapping” />
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Action Method Binding

• You can bind HTTP Request data to 
action method parameters, including
– Simple parameter types
– Bean parameter types
– Several special parameter types
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Simple Parameter Types

@RequestMapping

public void show(@RequestParam("id") Long id) {…}
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Bean Parameter Types

@RequestMapping

public void search(SearchCriteria criteria) {…}
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Special Parameter Types

@RequestMapping
public void foo(HttpServletRequest req, …) {…}

@RequestMapping
public void foo(HttpServletResponse res, …) {…}

@RequestMapping
public void foo(HttpSession session, …) {…}

@RequestMapping
public void foo(Locale locale, …) {…}
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Special Parameter Types (2)

@RequestMapping

public void foo(Model model, …) {…}

@RequestMapping

public void search(SearchCriteria criteria,

                   BindingResult bindingResult, …) {…}

@RequestMapping

public void foo(SessionStatus status, …) {…}
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Selecting Views

• Your controllers can select views to 
render
– By convention (the default)
– By returning a view name string



 Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 19

Selecting a View by 
Convention

@Controller
public class HotelsController {

    @RequestMapping

    public void index() {…}

}

• The request path is used as the view name by default
– Assume a request URL of /hotels/index
– The view rendered will be /WEB-INF/hotels/index.jsp
– Customize this convention with a RequestToViewNameTranslator
– Custom default view resolution rules with a ViewResolver
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Selecting a View Explicitly

@Controller
public class HotelsController {

    @RequestMapping

    public String index() { … return “/hotels/index”}

}

• The name of the view to render is returned
• Customize how the view is resolved with a ViewResolver
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Exporting @Controllers

• How do get your @Controller exported 
to the web?

• Two techniques
– Explicit bean definition
– Classpath Scanning
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Explicit Bean Definition

<bean class=“...SimpleUrlHandlerMapping”>
    <property name="mappings">
        <value>
            /hotels/*=hotelsController
       </value>
    </property>
</bean>

<bean id=“hotelsController” class=“…HotelsController” /> 
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Classpath Scanning

<!-- Activates annotation-based configuration -->
<context:annotation-config />

<!-- Scans for @Components to export and configure -->
<context:component-scan base-package=”com.mycompany.app”/>



 Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 24

Demo

• Spring Travel Reference Application
– @Controller usage
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Spring Web Flow

• An official Spring MVC extension for 
implementing flows
– “A flow encapsulates a reusable sequence of steps 

that can execute in different contexts”

• Web Flow 2 greatly simplifies the flow 
programming model
– SWF 2 flows on average 50% smaller than SWF 1

• Web Flow 2 adds major new features
– Comprehensive JSF support
– First class Ajax support
– Spring Security integration
– View scope
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Web Flow Sweet Spot
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Web Flow 2 to Web Flow 1

• Spring Travel Reference App v1
– 163 lines of Flow code across 3 artifacts

• Flow definition, Form Action Class, Bean File

• Spring Travel Reference App v2
– 33 lines of Flow code in 1 artifact

• Savings attributed to
– More concise flow definition syntax
– Enhanced expression language integration
– Declarative view model binding and validation
– Also, a new flow inheritance capability can further 

simplify large applications



 Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 28

Flow Definition Syntax 
Compared

Invoking Actions

v2
<evaluate expression="bookingService.createBooking(hotelId)”
              result="flowScope.booking" />

v1
<bean-action bean="bookingService” method="createBooking”>
    <method-arguments>
        <argument value="${flowScope.hotelId}” />
    </method-arguments>
    <method-result name="booking” scope="flow” />
</bean-action>
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View Model Binding

v2
<view-state id="enterBookingDetails" model="booking">
    <transition on="proceed" to="reviewBooking" />
    <transition on="cancel" to="cancel" bind="false" />
</view-state>

v1
<view-state id="enterBookingDetails"          
          view="enterBookingDetails.jsp">
    <render-actions>

     <action bean="formAction" method=”setupForm" />
    </render-actions>
    <transition on="proceed" to="reviewBooking">

     <action bean=”formAction" method="bindAndValidate" />   
 

    </transition>
    <transition on="cancel" to="cancel" />
</view-state>
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Mapping Flow Input/Output

v2
<subflow-state id="bookHotel" subflow="booking">
    <input name="hotelId” />
    <transition on="bookingConfirmed" to="finish” />
</subflow-state>

v1
<subflow-state id="bookHotel" flow="booking">
    <attribute-mapper>
        <input-mapper>
            <mapping source="flowScope.hotelId" 
                     target="hotelId”
        </input-mapper>
   </attribute-mapper>
   <transition on="bookingConfirmed" to="finish” />
</subflow-state>



 Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 31

Flow Definition Inheritance 

parent.xml

<flow abstract="true">

    <!-- Common elements -->

</flow>

child.xml

<flow parent=”parent">

    <!-- Your specific elements -->

</flow>
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Spring Security Integration

<flow>
    <secured attributes="ROLE_USER" />
</flow>

• Can also secure states and transitions
• Can refer to user Principal using EL

– Use the currentUser implicit variable
– Resolvable within flow and view templates
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Flow-Managed Persistence

<flow>
    <persistence-context/>
</flow>

• Scopes a persistence context with this flow
• Automatically used by your data access objects
• Can also call the flow’s EntityManager directly 

using EL
– e.g. entityManager.persist(booking)
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Ajax with View Scope

<view-state id="reviewHotels">
    <on-render>
        <evaluate expression="service.findHotels(criteria)" 
                      result="viewScope.hotels" />
    </on-render>
    <transition on="previous">
        <evaluate expression="criteria.previousPage()" />
        <render fragments="hotelsTable" />
    </transition>
    <transition on="next">
        <evaluate expression="criteria.nextPage()" />
        <render fragments="hotelsTable" />
    </transition>
    <transition on="select" to="reviewHotel" />
    <transition on="changeSearch" to="changeCriteria" />
</view-state>

View scope

Partial page rendering
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Popups

<view-state id="changeCriteria" popup="true">

    <transition on="search" to="reviewHotels” />

</view-state>
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JSF Support - “Spring Faces”

• Combines the JSF UI component model with 
Web Flow navigation/state management
– All in a native Spring MVC environment

• Spring Faces also includes a lightweight JSF 
component library
– Designed for the 80%

• Includes Ajax support, client-side form validation
– Built on a new Javascript module called “Spring.js”

• Integrates Dojo as the primary UI toolkit
• Applies progressive enhancement techniques
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Demo

• Spring Travel Reference Application
– Web Flow usage
– Spring Faces usage
– Spring Security integration
– Progressive enhancement
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Summary

• Spring MVC 2.5 is a great leap forward
– Elegant @Controller model

• Web Flow 2 is also a great leap forward
– Simplified flow definition language
– Groundbreaking work in the areas of Progressive Ajax 

and JSF

• Give them a try!
• Get involved in the Spring community at 

http://forum.springframework.org
• These slides are also available at 

http://blog.springsource.com
– Be sure to subscribe

http://forum.springframework.org/
http://blog.springsource.com/
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Questions?

Rossen.Stoyanchev@SpringSource.com


