
RUBY IS
FROM MARS,

Functional Languages Are
from Venus

Integrating Ruby with Erlang, Scala & F#

ANDREA O. K. WRIGHT
Chariot Solutions

aok@chariotsolutions.com

The source for all of the examples can be found at: https://github.com/A-OK/RubyIsFromMars

1

Conventions Used on These Slides

Console sessions are generally represented with a black background.

Console prompts and output are colored yellow.

Text entered into the console is colored white, red or green.

Red and green are used to highlight portions of entered code.

Here is a sample irb session:
> phrases = ["Ruby is from Mars", "Functional Languages are from Venus"]
=> ["Ruby is from Mars", "Functional Languages are from Venus"]
> phrases.join(", ")
=> "Ruby is from Mars, Functional Languages are from Venus"

2

About the Sample Code on the Slides...

Code examples on the slides don’t always show all the require or
include statements needed in order for the code to run.

For the complete code samples used in this presentation, as well as complete
details about how they were run and which versions of projects were used:

https://github.com/A-OK/RubyIsFromMars

3

The title of this talk is a reference to the classic book that asserts that men and women handle problems so
differently, itʼs as if they come from different planets where different languages are spoken.

But Iʼm not going to be talking about programming languages in terms of gender. I chose to link Ruby with Mars
because Mars is the red planet.

The book title has taken on a life of its own...

4

...and is now used to refer to all manner of polar opposites.

5

ENGINEERS ARE FROM MARS,
Marketers are from Venus

DEVELOPERS ARE FROM MARS,
Ops People are from Venus

CIOS ARE FROM MARS
CEOs are from Venus

These are titles of blog posts about how people with vastly different approaches to solving problems could
potentially work together well if they could just learn to communicate with each other.

6

FUNCTIONAL
IMPERATIVE

Functional and imperative programming are two vastly different approaches to solving problems.

Functional programming is programming without side-effects.

Itʼs programming with functions that you can count on to return the same thing whenever you pass in the same
arguments because they donʼt depend on anything other than the arguments they are passed.

Side-effect free functions donʼt need to access anything that is subject to change, like the filesystem, the GUI,
mutable data structures or mutable variables -- and they likewise donʼt modify anything that exists outside of
their function scopes.

For this talk, Iʼm going to go ahead and define a functional language as a language thatʼs partial to functional
programming.

7

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Let’s see what can happen when you’re allowed to change a variable.

Erlang meets that criteria. Hereʼs a passage about Erlangʼs view of mutable variables from Erlang creator Joe
Armstrongʼs Programming Erlang book.

He writes: “Letʼs see what can happen when youʼre allowed to change a variable,” -- and he shows a console
session where X is bound to 23.

8

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Now we can use X in computations: 2> Y = 4 * X + 3.
95

Let’s see what can happen when you’re allowed to change a variable.

He uses X in an equation...
9

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Now we can use X in computations: 2> Y = 4 * X + 3.
95

Now suppose we could change the value of X: 3> X = 19.

Let’s see what can happen when you’re allowed to change a variable.

(horrors)

... and then writes: “Now suppose we could change the value of X (horrors)”

The emphasis is mine, but he does actually use the word “horrors” in his text where he shows a console
session with an attempt to set X to 19.

10

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Now we can use X in computations: 2> Y = 4 * X + 3.
95

Now suppose we could change the value of X: 3> X = 19.

Let’s see what can happen when you’re allowed to change a variable.

(horrors) in process <0.31.0> with exit
value:
{{badmatch,19},[{erl_eval,expr,
3}]}

And then he shows the error that appears in the console when you try to change the value of a bound variable.

11

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Now we can use X in computations: 2> Y = 4 * X + 3.
95

Now suppose we could change the value of X: 3> X = 19.

Let’s see what can happen when you’re allowed to change a variable.

(horrors) in process <0.31.0> with exit
value:
{{badmatch,19},[{erl_eval,expr,
3}]}

But just suppose we could do this; then the value of Y would be wrong in
the sense that we can no longer interpret statement 2 as an equation.

He collects himself and goes on to point out that the statement in line 2 could no longer be interpreted as an
equation if the value of X was allowed to change.

12

From Programming Erlang by Joe Armstrong

Let’s define a variable X as follows: 1> X = 23.
23

Now we can use X in computations: 2> Y = 4 * X + 3.
95

Now suppose we could change the value of X:

Let’s see what can happen when you’re allowed to change a variable.

(horrors) in process <0.31.0> with exit
value:

{{badmatch,19},
[{erl_eval,expr,3}]}

But just suppose we could do this; then the value of Y would be wrong in
the sense that we can no longer interpret statement 2 as an equation.

3> X = 19.

Notice that the error message says “bad match,” and not something like “Attempt to modify a non-modifiable
values.”

This is because in Erlang, the equals sign (=) is the pattern matching operator, not the assignment operator.

The error is pointing out that 19 does not match 23.

Joe Armstrong describes the variable definition statement in line 1 as pattern matching with a simple pattern,
and not as variable assignment. He explains that if there are unbound variables on the left-hand side of an
equation, the pattern matching operator will take care of the variable binding to make the pattern on its left-hand
side match the pattern on its right-hand side.

13

Equations and “=” in Erlang

1> 2 + 3 = 4 + 1
5

The concept of using the equals sign the way it would be used in a mathematical equation is very important in
Erlang: in math the equals sign signifies that the left-hand side matches the right-hand side.

Hereʼs a example that shows the extent to which Ruby and Erlang are not on the same page with respect to
equals sign. Ruby would choke on a statement like the one in this slide, but itʼs perfectly valid in Erlang.

Incidentally there are ways to mutate state in Erlang. For example, each process has a mutable process
dictionary. But I think Erlangʼs functional bias is clear.

14

scala> val x = 23
x: Int = 23
scala> x = 19
<console>:5: error: reassignment to val
 x=23

scala> var y = 23
y: Int = 23
scala> y = 19
y: Int = 19

Mutable vars

Immutable vals

Now letʼs look at why think Scala is partial to functional programming.

This slide shows two ways to define variables in Scala. The val keyword is used to define immutable variables
and the var keyword is for mutable variables. As you can see, changing the val, x, to 19 after initially setting it
to 23, causes an error -- while there is no problem changing the value of the var, y.

The vals are considered superior in the realm of Scala.

15

In Scala , we should prefer
using val over var as much as
possible since that promotes
immutability and functional
style.
 ― Venkat Subramaniam,
 Programming Scala

In the Programming Scala, Venkat Subramaniam writes: “In Scala, we should prefer using val over var as
much as possible since that promotes immutability and functional style.”

16

Scala enables you to program
imperatively, but as you get to
know Scala better, you'll likely
often find yourself programming
in a more functional style.
― Bill Venners, Lex Spoon, Martin Odersky,
 “First Steps to Scala”

This sentiment is echoed in an article on the web called “First Steps to Scala” that was co-authored by Scala
creator Martin Odersky: “Scala enables you to program imperatively, but as you get to know Scala better, you'll
likely often find yourself programming in a more functional style.”

17

> let x = 23;;
val it : int = 23
> x = 19;;
val it : bool = false
> x;;
val it : int = 23

> let mutable y = 23;;
val mutable y : int = 23
> y <- 19;;
val it : unit = ()
> y;;
val it : int = 19

F#

The mutable Keyword

Immutable Variables

In F#, variables are immutable by default. Although the F# console doesnʼt complain about the attempt to
assign 19 to x after it was bound to 23, you can see that when x is evaluated in the console on the next line, it
is still 23.

To create mutable variables, you need to use the mutable keyword, and you have to use the special left arrow
operator (<-) to modify their values.

Incidentally in the F# console two semicolons (;;) are used to indicate that an expression is ready to be
evaluated.

18

Many F# programmers use
functional programming
techniques first before turning to
their imperative alternatives, and
we encourage you to do the
same...
-- Don Syme, Adam Granicz, Atoninio Cisternino,
 Expert F#

This is from the book Expert F#, which was co-authored by F# creator Don Syme: “Many F# programmers use
functional programming techniques first before turning to their imperative alternatives, and we encourage you to
do the same...”

19

I have once dreamed of a such
language [immutable Ruby], and
had a conclusion that was not
Ruby...
― Yukihiro “Matz” Matsumoto

I do not believe Ruby can be called a functional language based on the my criteria.

Even though Matz was influenced by some functional concepts from the beginning, and even though many techniques
associated with functional programming are built into Ruby, I donʼt think Ruby is a functional language at heart.

Hereʼs Matz on the subject of immutable Ruby from a mailing list discussion about Reia, a language with Ruby-like syntax
that runs on the Erlang VM. He posted: “I have once dreamed of such a language, and had a conclusion that was not
Ruby...”

Fortunately, even if you have a use case that requires immutability, you donʼt necessarily need to use a functional
language in lieu of Ruby. Iʼm going to talk about projects that enable you to develop polyglot systems with Ruby and
functional languages.

(Hat tip to Tony Arcieri for highlighting this Matz quote in his presentation “Building Languages on Erlang (and an introduction to Reia)”
which is downloadable from here: http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/TonyArcieri).

20

Galactic Phrase Book

For the most part, Iʼm going to focus on what I think of as “Phrase Book Level” interoperability.

Thereʼs a way in which communicating exclusively with phrases from a phrase book in a country where you
donʼt speak the native language is not unlike incorporating a second programming language by making discreet
library calls to a API implemented in that second language.

Weʼll also look at some deeper types of integration.

We wonʼt just look at how to use the libraries Iʼm covering, weʼll also walk through some of the lower-level code
allows the inter-language communication to happen.

21

Phrase Book-Level
Interoperability

Mars Library Venus Libraries

Most of the examples come from my Mars and Venus micro-libraries that can calculate an age in Mars or Venus
years.

The Mars library is implemented in Ruby -- and there are Erlang, Scala and F# implementations of the Venus
library.

22

Rebar

http://github.com/grockit/rulang

http://github.com/mojombo/rebar

(Ruby to Erlang Bridge and Runner)
Tom Preston-Werner

Toshiyuki Hirooka; Chuck Vose

RBridge/rulang

Weʼll start by looking at Rebar and RBridge, two projects that make it easy to embed calls to Erlang functions in
Ruby code.

The usage for Rebar and RBridge is almost identical. But as we will see, the implementations are different,
particularly on the Erlang side.

Before I started researching this talk, I did not think of Erlang as a language that was good for constructing
DSLs. But in the Rebar and RBridge source, I found two different ways to dynamically build up calls to arbitrary
functions.

23

-module(venus).
-export([venus_age/1]).

venus_age(Age) ->
 Age * (365.26/224.68).

Hereʼs venus_age, the Erlang function Iʼm going to use in both my Rebar and RBridge examples. You supply
an Age, and the function returns that Age in Venus years.

Iʼve placed it in a module called venus.

24

Rebar RBridge
1> rebar:start(). 1> rulang:start_server(9900).

-module(venus).
-export([venus_age/1]).

venus_age(Age) ->
 Age * (365.26/224.68).

Both Rebar and RBridge come with Erlang-based servers that need to run in the background.

The Erlang console session on the left shows the command that starts Rebarʼs server, and the Erlang console
session on the right shows the command that kicks off the RBridge server, which is called “rulang”.

25

> require './client.rb'

> proxy = Rebar::Erlang.new(:venus,
 '127.0.0.1',
 5500)
> proxy.venus_age(17)

=> 27.6367

 > require ‘rbridge’

 > proxy = RBridge.new(“venus”,
 "localhost",
 9900)
 > proxy.venus_age(17)

 => 27.6367277906356

Rebar RBridge

Rebar RBridge
1> rebar:start(). 1> rulang:start_server(9900).

-module(venus).
-export([venus_age/1]).

venus_age(Age) ->
 Age * (365.26/224.68).

This slide shows how easy Rebar and RBridge make it for a Ruby program to call to a function defined in an Erlang module.

The irb session on the right creates a proxy for the Erlang module by passing a symbol representing the name of the Erlang module,
the Erlang server ip address and the Erlang server port to the Rebar::Erlang constructor.

Similarly, the irb session on the left creates a proxy for the Erlang module by passing the name of the Erlang module, the Erlang
server ip address, and the Erlang server port to the constructor for the RBridge class.

As shown in the lines highlighted in red in both the Rebar and RBridge irb sessions, calling an Erlang function on the Erlang module
linked to the proxy looks just like calling a Ruby method on the proxy. To call the Erlang function named venus_age, we just call
venus_age on the proxy.

These sample irb sessions pass 17 to the venus_age function. Why did I chose to send 17? Because that is how old Ruby is in
Earth years. These console sessions show that Ruby would be around 27 years old on Venus.

26

{"method":"venus:venus_age",
 "params":[17],
 "id":0}

Rebar RBridge

method_missing

> proxy.venus_age(17)

 "venus:venus_age(17)."

Now Iʼm going to walk through some of the Ruby source for the Rebar and RBridge projects.

Both Rebar and RBridge leverage method_missing to transform the method call on the proxy into data that
can be sent to their Erlang servers.

In method_missing, Rebar uses JSON to label a “method” (a string comprised of the module name, a colon
and the function name) and “params” (in this case, an array containing the one parameter, 17).

In method_missing, RBridge creates a string using the correct Erlang syntax for calling a function (ie, the
module name, a semi-colon, the function name, and the arguments enclosed in parentheses). Unless the
function is local to a module or unless it is in the erlang module, it should be prefixed with the module name
and a colon.

27

{"method":"venus:venus_age",
 "params":[17],
 "id":0}

Rebar RBridge

method_missing

> proxy.venus_age(17)

 "venus:venus_age(17)."

TCPSocket

Both Rebar and RBridge use TCP to send the formatted version of the method call on the proxy to their
corresponding Erlang servers. Both use Rubyʼs TCPSocket class.

28

{"method":"venus:venus_age",
 "params":[17],
 "id":0}

Rebar RBridge

method_missing

> proxy.venus_age(17)

 "venus:venus_age(17)."

TCPSocket

gen_tpc
Rebar RBridge

On the Erlang side, both Rebarʼs Erlang server and RBridgeʼs Erlang server use Erlangʼs gen_tpc module to
receive the formatted method call.

In the next couple of slides, Iʼll show how the Rebar and RBridge Erlang server implementations differ, and how
the two different implementations made me see how much potential Erlang has for being a DSL host language
and for supporting projects that require a degree of dynamism.

Weʼll look at Rebarʼs Erlang server implementation first.

29

apply(Module, Function, Args) -> term() | empty()

Types:

Module = Function = atom()
Args = [term()]

Returns the result of applying Function in Module to Args. The
applied function must be exported from Module. The arity of the
function is the length of Args.

Erlang Run-Time System Application (ERTS)
Reference Manual

Rebar uses the apply function, one of the Erlang BIFs (built-in-functions that can be found in the erlang
module). This slide shows a section of the Erlang reference manual that covers the apply function.

As the “Types” sub-section indicates, you can pass apply a module name and a function name as atoms (which
are comparable to symbols in Ruby) and the arguments as a list of terms (terms are Erlang expressions, and
list syntax in Erlang is comparable to array syntax in Ruby).

The apply function will return the result of invoking the specified function on the specified module with the
specified arguments.

30

Rebar

apply(list_to_atom(Module),
 list_to_atom(Function),
 tuple_to_list(Params))

apply(venus,
 venus_age,
 [17])

The Rebar Erlang server processes the data it receives using the Erlang json moduleʼs decode_string
function and populates the Module, Function and Params variables, based on the values it received.

The top code fragment shows the call to apply from the Rebar source code. Itʼs using list_to_atom to
convert the Module and Function values to atoms. You might expect it to use a function called something like
“string_to_atom” instead of “list_to_atom”, but there is no String datatype in Erlang. A group of characters
enclosed by double quotes represents a list -- a list of characters.

The green-bordered box shows the apply function call with the values of the parameters substituted for the
expressions that yield those values.

The Rebar Erlang server uses gen_tcp:send to send the return value of the apply function (ie the invocation
of venus:venus_age(17) via the apply function) to Rebarʼs Ruby proxy.

31

MODULE

erl_eval
MODULE SUMMARY

The Erlang Meta Interpreter
DESCRIPTION

This module provides an interpreter for Erlang expressions. The
expressions are in the abstract syntax as returned by erl_parse, the
Erlang parser, or a call to io:parse_erl_exprs/2.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}

Erlang Run-Time System Application (ERTS)
Reference Manual

Where Rebar uses apply, RBridge uses the erl_eval moduleʼs exprs function. The exprs function is an
Erlang interpreter. It evaluates the expression it is passed.

This slide shows some details about exprs from the Erlang reference manual.

RBridge uses the erl_scan tokenizer to process the data it receives from TCP, and then uses the erl_parse
function specified by the reference manual text in this slide to generate abstract syntax expressions to pass to
the erl_eval moduleʼs exprs function.

32

RBridge

[{call,0,
{remote,0,
{atom,0,venus},
{atom,0,venus_age}},
[{integer,0,17}]}]

 "venus:venus_age(17)."

The top box shows the data passed to the RBridge Erlang server (ie the module name, a colon, the function
name, the argument enclosed in parentheses, and a period -- all enclosed in quotes), and the bottom box
shows the corresponding abstract syntax expression passed to erl_eval:exprs after it has been tokenized
and parsed.

RBridge sends the value returned by erl_eval:exprs (ie the value of the call to venus:venus_age(17))
back the the Ruby proxy via TCP.

33

Erlectricity

http://github.com/mojombo/erlectricity
Scott Fleckenstein; Tom Preston-Werner

The next Erlang/Ruby interop library weʼre going to look at is Erlectricity. Unlike Rebar and RBridge, which
make Erlang functions accessible from the Ruby side, Erlectricity enables Erlang programs to initiate contact
with Ruby routines. Once contact is established, the Erlang caller and Ruby service can exchange multiple
messages.

34

mars.rb

)

Erlang’s Ports System

Erlang Runtime System

Erlectricity leverages Erlangʼs Ports System, which is comprised of a set of BIFs (ʻBuilt-in Functionsʼ that can be found in
the erlang module) that enable an Erlang process to connect to an external process.

In this slide, the green box represents an Erlang runtime system with multiple active processes, and the Ruby represents
a Ruby program. The sample Ruby program weʼre going to look at is called “mars.rb”. The Erlang process circled in red
represents the what is known as the “connected process” -- the one that opens a port to the external process.

Only the connected process communicates directly with the external process to ensure that the entire Erlang runtime
system will not go down if the external process crashes.

Other Erlang processes that need the functionality provided by the external process go through the connected process
because the external process is not able to send messages to any other process. The connected process typically
exposes a function that wraps the code that sends messages to and receives messages from the external process.

35

ruby mars.rb

require 'rubygems'
require 'erlectricity'

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

Erlectricity

Here is the entire contents of mars.rb. The part highlighted in red is the business logic the program provides:
the calculation that returns an age in Mars years.

The rest of the code is Erlectricity boilerplate code needed to communicate with an Erlang process. After the
next few slides, weʼll go over each line of this code in detail so you can see how Erlectricity works.

Before we take a behind-the-scenes look at Erlectricity, I want to show how easy it is to use.

36

mars.erl

ruby mars.rb

require 'rubygems'
require 'erlectricity'

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

-module(mars).
-export([mars_age/1]).

mars_age(Age) ->
 Port = open_port({spawn, "ruby mars.rb"}, [{packet, 4},
 nouse_stdio, exit_status, binary]),
 port_command(Port, term_to_binary({mars_age, Age})),
 receive
 {Port, {data, Data}} ->
 {result, Mars_Years} = binary_to_term(Data),
 io:format("~p~n", [Mars_Years])
 end.

Erlectricity

Hereʼs all the code required to enable mars.rb to communicate with an Erlang process.

On the Ruby side, thereʼs mars.rb.

On the Erlang side, thereʼs a module called mars in a file called “mars.erl”, with a function called mars_age
that accepts a parameter called Age. Pass an Age to mars:mars_age, and it will print out that age in Mars
years, courtesy of the calculation in mars.rb.

37

mars.erl

ruby mars.rb

require 'rubygems'
require 'erlectricity'

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

-module(mars).
-export([mars_age/1]).

mars_age(Age) ->
 Port = open_port({spawn,"ruby mars.rb"},[{packet, 4},
 nouse_stdio, exit_status, binary]),
 port_command(Port, term_to_binary({mars_age, Age})),
 receive
 {Port, {data, Data}} ->
 {result, Mars_Years} = binary_to_term(Data),
 io:format("~p~n", [Mars_Years])
 end.

Erlectricity

Eshell V5.6.5 (abort with ^G)
1> mars:mars_age(17).
9.038720195638883
ok

Hereʼs an Erlang console session in which mars:mars_age is invoked with an argument of 17. As you can
see, Ruby is about 9 years old in Mars years.

Now weʼll take a closer look at what happens behind the scenes, first on the Erlang side, and then on the Ruby
side.

38

mars.erl

ruby mars.rb

require 'rubygems'
require 'erlectricity'

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

-module(mars).
-export([mars_age/1]).

mars_age(Age) ->
 Port = open_port({spawn,"ruby mars.rb"},[{packet, 4},
 nouse_stdio, exit_status, binary]),
 port_command(Port, term_to_binary({mars_age, Age})),
 receive
 {Port, {data, Data}} ->
 {result, Mars_Years} = binary_to_term(Data),
 io:format("~p~n", [Mars_Years])
 end.

Erlectricity

The function mars:mars_age uses the open_port BIF (Erlang built-in function found in the erlang module) to run and establish contact with
mars.rb. The open_port BIF takes two parameters: 1) a command (which in this case is invoking “ruby mars.rb”) and 2) a list of port settings (an
Erlang list is enclosed in square brackets) The port settings that should be used with Erlectricity are:

1. the packet length. This is expressed as a tuple -- a collection of values enclosed in curly braces in Erlang -- where the first value is the atom
packet (an atom is comparable to a symbol in Ruby, but is not prefixed with a colon) and the second value is the number 4. The open_port BIF
will accept 4, 2, or 1, but 4 should be used with Erlectricity.

2. an atom which indicates whether STDIN and STDOUT should be used for input and output by the port. When the atom nouse_stdio is included
in the port settings list, Erlang will use file descriptors 3 and 4 for input and output streams respectively. If the atom use_stdio is in the settings list,
STDIN and STDOUT will be used (ie file descriptors 1 and 2). Erlectricity uses descriptors 3 and 4 by default.

3. the atom exit_status, which indicates that if the external process exits, a tuple including the atom exit_status and the exit status of the
external process should be sent to the connecting process. Handling the exit status is beyond the scope of this talk.

4. the atom binary, which indicates that data exchanged should be in binary format.

39

mars.erl

ruby mars.rb

require 'rubygems'
require 'erlectricity'

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

-module(mars).
-export([mars_age/1]).

mars_age(Age) ->
 Port = open_port({spawn,"ruby mars.rb"},[{packet, 4},
 nouse_stdio, exit_status, binary]),
 port_command(Port, term_to_binary({mars_age, Age})),
 receive
 {Port, {data, Data}} ->
 {result, Mars_Years} = binary_to_term(Data),
 io:format("~p~n", [Mars_Years])
 end.

Erlectricity

Next, the mars_age function uses the port_command BIF, which writes to the output stream for the spawned
command (ie “ruby mars.rb”) to request the Mars years calculation.

It sends a tuple comprised of the atom mars_age (which corresponds to the symbol :mars_age in the Ruby
code) and the value of the variable Age (which is passed into mars:mars_age).

40

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

Before we look at what happens when mars.rb receives a request, weʼll look at what it does to prepare for receiving a request.

The red-bordered box shows the entire contents of mars.rb (with the exception of the require statement for “erlectricity”), which is a
single call to receive.

The black-bordered box on the top of the slide shows how the Erlectricity library defines receive as a Kernel method.

The first two parameters to receive are optional, and the code in ruby.rb does not provide values for them. The code highlighted in
red shows how these first two parameters are used. They are used to create an input stream and an output steam, which are passed
to the constructor for an Erlectricity::Port.

The Port instance, port, reads from the input stream with a routine that decodes the binary data it receives and likewise writes to
the output stream with a routine that takes care of encoding the data it sends. The Port instanceʼs read and write routines also
handle some type conversions. For example, data received in the Erlang Binary Term Format for an atom, will generally be converted
to a symbol for use by Ruby.

41

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

Basically, all the mars.rb code does is pass the required block parameter to receive.

Iʼve highlighted the block that mars.rb is passing to receive.

42

module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)

 receiver = Erlectricity::Receiver.new(port,
 &block)

 receiver.run
 end
end

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

ruby mars.rb

The receive method, in turn, passes the block - “block stock and barrel” so to speak, along with the Port
instance, to the constructor for the Receiver class.

What happens in the initialize method for a Receiver is that the blockʼs logic is executed with the freshly-
minted Receiver as its parameter.

43

receive do |receiver|
 receiver.when([:mars_age, Fixnum])

 do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end

end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

The logic in the block calls a single method on its argument, receiver (the newly-minted Receiver): when.

The when method takes 2 arguments

44

receive do |receiver|
 receiver.when([:mars_age, Fixnum])

 do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end

end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

... an Array ...

45

receive do |receiver|
 receiver.when([:mars_age, Fixnum])

 do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end

end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

... and a block.

46

receive do |receiver|
 receiver.when([:mars_age, Fixnum])

 do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end

end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

The Array represents a message profile, and it should be comprised of a symbol (in this case, :mars_age)
and a datatype (in this case, Fixnum).

The block represents an action to take when a message that matches the specified profile is read from the
Erlectricity::Portʼs input stream.

The when method sets up a construct (an instance of Matcher)that maps message profiles to the blocks.

47

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
 receiver.when([:mars_weight, Fixnum]) do |weight|
 receiver.send!([:result, weight * 0.377])
 receiver.receive_loop
 end
end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

If I wanted to add more functionality to mars.rb, I would add additional when calls to the block I pass to
receive.

For example, this is what mars.rb might look like if I wanted to support calculating weight on Mars in addition to
calculating Mars years.

48

receive do |receiver|
 receiver.when([:mars_age, Fixnum]) do |age|
 receiver.send!([:result, age/(686.98/365.26)])
 receiver.receive_loop
 end
end

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

Back to the original version of mars.rb...

We left off walking through the code in the Kernal#receive definition with the call to the Receiver
constructor.

The next line, which also happens to be the last line in receive, is highlighted in red. Itʼs a call to the newly
created Receiverʼs run method.

49

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

 class Receiver
 def run
 loop do
 msg = port.receive
 return if msg.nil?

 case result = process(msg)
 when RECEIVE_LOOP then next
 when NO_MATCH
 port.skipped << msg
 next
 else
 break result
 end
 end
 end
 end

Hereʼs what run looks like. In a loop, it 1) calls receive on the Receiverʼs Port, which wraps a read call to
the Receiverʼs input stream and 2) processes the message if the Erlang side has dispatched one (via the
process(msg) call).

50

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

 class Receiver
 def run
 loop do
 msg = port.receive
 return if msg.nil?

 case result = process(msg)
 when RECEIVE_LOOP then next
 when NO_MATCH
 port.skipped << msg
 next
 else
 break result
 end
 end
 end
 end

 [:mars_age,
 17]

The process method checks to see if the message matches any of the message profiles it supports.

In our example, the Receiver would detect that the symbol :mars_age and a Fixnum (17) match the
message profile that is linked to ...

51

Erlectricity
module Kernel
 def receive(input = nil, output = nil, &block)
 input ||= IO.new(3)
 output ||= IO.new(4)
 port = Erlectricity::Port.new(input,output)
 receiver = Erlectricity::Receiver.new(port, &block)
 receiver.run
 end
end

ruby mars.rb

 class Receiver
 def run
 loop do
 msg = port.receive
 return if msg.nil?

 case result = process(msg)
 when RECEIVE_LOOP then next
 when NO_MATCH
 port.skipped << msg
 next
 else
 break result
 end
 end
 end
 end

 [:mars_age,
 17]

do |age|
 receiver.send!([:result,
 age/(686.98/365.26)])
 receiver.receive_loop
end

... the block that calculates the age in Mars years.

The Receiver instanceʼs send! method calls the Receiverʼs Portʼs write wrapper to format the result of
the calculation and send it to the Erlang caller.

52

JInterface

erl-interface

In addition to providing the Ports mechanism for building polyglot systems, Erlang is packaged with a couple of
libraries that enable programs written in other languages to communicate with Erlang processes: JInterface and
erl-interface.

JInterface targets Java and can be used in conjunction with JRuby -- while erl-interface, which is C-based, can
be integrated with Ruby via Rubyʼs C Extension mechanisms.

As you might infer from the JInterface Javadoc fragment on the top of the slide (with classes like
AbstractConnection) and a screenshot of an erl-interface source directory on the bottom of the slide (with
corresponding filenames like “ei_connect.c”), these two libraries offer comparable functionality.

53

JInterface

erl-interface
Erlix

http://github.com/KDr2/erlix

Killy Draw

Ola Bini
http://olabini.com/blog/2008/04/connecting-languages-or-polyglot-programming-example-1/

Connecting Languages
(or polyglot programming example 1)

I donʼt know of any formal projects that provide a JRuby wrapper around JInterface, but Iʼve seen a few blog
posts with sample JRuby code that leverages JInterface to create client and server nodes that Erlang nodes
communicate with much in the same way that they interact with other Erlang nodes.

Weʼre going to look at a blog post by JRuby core team member Ola Bini called “Connecting Languages (or
polyglot programming example 1).” Itʼs about a library he wrote as part of a “15 minute experiment” to see how
easy it would be to connect two languages that are “popular for solving wildly different kinds of problems.” Iʼm
going to show you how I used his library create a JRuby client that sends an Erlang server a request to
calculate an age in Venus years and a JRuby server that calculates ages in Mars years for its clients.

On the C-side, thereʼs Killy Drawʼs Erlix project, which provides access to erl-interface for Ruby programmers.
After going over the Jinterface examples, weʼll look at code using Erlix and code using Ola Biniʼs library side by
side. Erlix is not yet Ruby 1.9.2 compatible, but 1.9.2 support is on the project roadmap.

54

JInterface
require 'java'
require '/path/to/OtpErlang.jar'

module Erlang
 import com.ericsson.otp.erlang.OtpSelf
 # additional imports

 class << self
 def tuple(*args)
 OtpErlangTuple.new(args.to_java(OtpErlangObject))
 end

 def num(value)
 OtpErlangLong.new(value)
 end

 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end

 def client(name, cookie)
 yield OtpSelf.new(name, cookie)
 end
 ...
 end
end

Connecting Languages

Here are excerpts from the Olaʼs experimental proof-of-concept library. Calls to the actual JInterface API are
highlighted in green. The part that constitutes a JRuby wrapper is in red.

As you can see, the library is a very thin wrapper around JInterface. Itʼs perfect for this talk because I donʼt have
to strip away any layers to show you the language integration points.

The “Otp” that prefixes the JInterface class names stands for Open Telecom Platform and is part of the full
name of the open source distribution of Erlang, which is “Erlang\OTP”.

55

JInterface
require 'java'
require '/path/to/OtpErlang.jar'

module Erlang
 import com.ericsson.otp.erlang.OtpSelf
 # additional imports

 class << self
 def tuple(*args)
 OtpErlangTuple.new(args.to_java(OtpErlangObject))
 end

 def num(value)
 OtpErlangLong.new(value)
 end

 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end

 def client(name, cookie)
 yield OtpSelf.new(name, cookie)
 end
 ...
 end
end

Connecting Languages

def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
end

def client(name, cookie)
 yield OtpSelf.new(name, cookie)
end

Hereʼs a closer look at the server and client methods, which both create new instances of the OTPSelf, a
class that represents an Erlang node.

Both client and server expect to be passed a block, and are structured to pass the newly created client or
server node to that block. The server method will also pass a connection to that block (the server.accept
call returns an OtpConnection instance).

As the sample code in the following set of slides will show, the block passed to client and server should call
the OTPSelf methods that enable nodes to send and receive messages from other nodes.

Client and server nodes created via JInterface can communicate with Erlang nodes and other nodes created via
JInterface.

56

require 'erlang'

Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

JInterface Server

module Erlang
...
 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end
...
end

The top half of this slide shows all the code needed to create a minimal JRuby-based server.

The code in the box shows the source code for the server method from Ola Biniʼs “Connecting Languages”
library, for reference.

This JRuby-based server calculates the Mars years equivalent of an age.

The first argument to server, in this case, “mars_server@localhost” represents the server name. The second
argument, “mars”, represents the security cookie name. The server will not accept connections from clients that
do not use the specified cookie name.

57

require 'erlang'

Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

module Erlang
...
 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end
...
end

JInterface Server

This slide highlights the block passed to server.

As I noted a few slides back, the block takes two arguments -- the server and a connection (the
server.accept call returns an OtpConnection).

When the block passed to the server method is invoked ...

58

require 'erlang'

Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

module Erlang
...
 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end
...
end

JInterface Server

.. it calls receive on the connection passed to it, which waits until a message is detected.

59

require 'erlang'

Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

module Erlang
...
 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end
...
end

JInterface Server

A message that arrives is split into the caller process id (caller_pid) and the age the server will calculate in
Mars years (age).

60

require 'erlang'

Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

module Erlang
...
 def server(name, cookie)
 server = OtpSelf.new(name, cookie)
 server.publish_port
 while true
 yield server, server.accept
 end
 end
...
end

JInterface Server

The server then sends the Mars age to the consumer of its service by invoking send on the connection and
supplying the callerʼs process id (caller_pid) as well as the result of applying the Mars years calculation to
age.

61

require 'erlang'
Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

JInterface Server

Erlang Client
-module(mars_client).
-export([mars_age/1]).
mars_age(Age) ->
 {'mars_server','mars_server@localhost'} ! {self(), Age},
 receive
 Mars_Years ->
 io:format("~p~n", [Mars_Years])
 end.

Hereʼs the Mars server on a split screen with a client written in Erlang.

The Erlang client, a module called mars, exposes a mars_age function that takes an Age in Earth years, sends it to the
JRuby-based Mars server and prints out the reply it receives from the Mars server, which represents the Age in Mars
years.

The exclamation point (!) in the line highlighted in green is Erlangʼs “send” operator. The send operator dispatches the
expression on its right (in this case a tuple including the return value of self(),which is the process id of the Erlang
client, and an Age in Earth years) to the process specified by the expression on its left (in this case a tuple including
“mars_server”, the registered name of the server, and its node name, “mars_server@localhost”).

As we saw when we walked through the Jinterface server code, the first element of the message is assigned to
caller_pid, which is used to address the response, and the second element is assigned to age, which is used in the
Mars age calculation.

62

-module(mars_client).
-export([mars_age/1]).
mars_age(Age) ->
 {'mars_server','mars_server@localhost'} ! {self(), Age},
 receive
 Mars_Years ->
 io:format("~p~n", [Mars_Years])
 end.

require 'erlang'
Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

JInterface Server

Erlang Client

The receive clause assigns the response to the variable Mars_Years.

The io:format call writes Mars_Years to the standard output.

63

require 'erlang'
Erlang::server("mars_server@localhost", "mars") do |server, connection|
 while true
 message=connection.receive
 caller_pid = message.element_at(0)
 age = message.element_at(1)
 connection.send(caller_pid,
 Erlang::double(age.double_value/(686.98/365.26)))
 end
end

JInterface Server

$ epmd

$ jruby mars_server.rb

-module(mars).
-export([mars_age/1]).
mars_age(Age) ->
 {'mars_server','mars_server@localhost'} ! {self(), Age},
 receive
 Mars_Years ->
 io:format("~p~n", [Mars_Years])
 end.

$ erl -sname mars_client@localhost -setcookie mars

Erlang (BEAM) emulator version 5.6.5 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.5 (abort with ^G)
(mars_client@localhost)1> mars:mars_age(17.0).
9.038720195638883
ok

Erlang Client

To see this exchange in action, Erlangʼs Port Mapper Daemon (epmd) must be running. It starts up
automatically when you use erl (the Erlang emulator) to create the client node -- but if you want to initiate the
server/client conversation by firing up the JRuby-based server, youʼll see a “java.io.IOException: Nameserver
not responding” message in your console if you donʼt run the epmd command prior to starting the server.

The two console windows on the top part of the slide show the commands that primed the server to receive
messages.

The console window on the bottom half shows the command that creates the client node using the -
setcookie command line option to specify “mars”, the cookie required for server access and the -sname
option to specify a node name. The Erlang console window also shows a call to the mars:mars_age function
and the printout of the response it received from the server: the Mars years equivalent of 17, which is
9.038720195638883.

64

mars_age(Age) ->
 {mars_server_mailbox,'mars_server@127.0.0.1'} ! {self(), Age},
 receive
 X ->
 io:format("~p~n", [X])
 end.

Erlectricity Erlang Client
mars_age(Age) ->
 Port = open_port({spawn,"ruby mars.rb"},[{packet, 4},
 nouse_stdio, exit_status, binary]),
 port_command(Port, term_to_binary({mars_age, Age})),
 receive
 {Port {data, Data}} ->
 {result, Mars_Years} = binary_to_term(Data),
 io:format("~p~n", [Mars_Years])
 end.

JInterface Erlang Client
-module(mars_client).
-export([mars_age/1]).

mars_age(Age) ->
 {‘mars_server’,'mars_server@localhost'} ! {self(), Age},
 receive
 Mars_Years ->
 io:format("~p~n", [Mars_Years])
 end.

This split screen slide compares the Erlang-based JInterface client weʼve been looking at with the Erlang-based
Erlectricity client we looked at a little earlier.

On the Erlang side, thereʼs virtually no difference between communicating with a node created via JInterface
and an Erlang-based node -- but using the Erlectricity requires that the Erlang client use special port protocols
and handle conversions to and from binary.

An Erlang-based Erlectricity client does have the option of using the more idiomatic send operator (!) in lieu of
port_command, making the client look a little more like a typical Erlang consumer of an Erlang-based service --
but there are special rules governing the message syntax for an Erlang process connected to a Port. For
example, the message must include the command atom. Using the alternative syntax, the following could be
used in place of the port_command line: Port ! {command, term_to_binary({mars_age, Age})}

65

-module(venus_server).
-export([start/0]).
 start() ->
 Pid=spawn(fun venus_age/0),
 register(venus_server,Pid).
venus_age ->
 receive
 {Caller, Age} ->
 Caller ! ((365.26/224.68) * Age),
 venus_age()
 end.

$erl -sname venus_server@localhost -setcookie venus
-noshell -run venus_server

Erlang Server

Now weʼll walk through a scenario with a server written in Erlang and a JRuby-based client.

The venus_server moduleʼs start function invokes its venus_age function in a new a process. The
venus_age function receives and processes messages that include a caller process id and an age in Earth
years. The spawned process calculates the age in Venus years and returns the result to the caller.

Upcoming slides provide a more detailed discussion of the venus_age function.

The command in the console representation at the top of the slide kicks off the Erlang-based Venus server, with
the node name (venus_server@localhost), the security cookie name (venus), and the -run option indicating
that the venus_server moduleʼs start function should be invoked (if we specify a module name, but no
function name following the -run flag, Erlang will try to invoke the moduleʼs start function).

66

module Erlang
...
 def client(name, cookie)
 yield OtpSelf.new(name, cookie)
 end
...
end

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = client.connect(venus_server)
 connection.send("venus_server", Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

JInterface Client

This slide shows a JRuby-based consumer of the service exposed by the venus_server module and the
source for the client method from Ola Biniʼs ʻConnecting Languagesʼ library.

The JRuby-based consumer passes the client method its node name (venus_client@localhost) and a
security cookie value that matches the cookie specified at server start-up time (venus).

The JRuby client also supplies ...

67

module Erlang
...
 def client(name, cookie)
 yield OtpSelf.new(name, cookie)
 end
...
end

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = client.connect(venus_server)
 connection.send("venus_server", Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

JInterface Client

... a block that expects the newly created client node to be passed in as the single block argument and that
makes JInterface API calls on that client node to connect to the server, send a message to the server and
receive a reply from the server.

In the next couple of slides, Iʼll discuss each line of the block I highlighted in red.

68

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = client.connect(venus_server)
 connection.send("venus_server", Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

-module(venus_server).
-export([start/0]).
 start() ->
 Pid=spawn(fun venus_age/0),
 register(venus_server,Pid).
venus_age()->
 receive
 {Caller, Age} ->
 Caller ! ((365.26/224.68) * Age),
 loop()
 end.

JInterface Client

Erlang Server

This slide highlights where the registered name of the server (venus_server) is referenced in the client code.

69

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = venus_client.connect(venus_server)
 connection.send("venus_server", Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

-module(venus_server).
-export([start/0]).
 run()->
 Pid=spawn(fun venus_age/0),
 register(venus_server,Pid).

venus_age()->
 receive
 {Caller, Age} ->
 From ! ((365.26/224.68) * EarthAge),
 loop()
 end.

JInterface Client

Erlang Server

The client sends the server its process id (client.pid) and the number 17, which are mapped to Caller and
Age on the server side.

70

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = venus_client.connect(venus_server)
 connection.send("venus_server", Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

-module(venus_server).
-export([start/0]).
 run() ->
 Pid=spawn(fun venus_age/0),
 register(venus_server,Pid).

venus_age()->
 receive
 {Caller, Age} ->
 Caller ! ((365.26/224.68) * Age),
 loop()
 end.

Erlang Server

JInterface Client

The server uses the send operator (!) to reply to the consumer of its service with the formula for Venus years
applied to the Age it received.

The client deposits the message it receives into the venus_age variable and then prints it out.

71

require 'erlang'
Erlang::client("venus_client@localhost", "venus") do |client|
 venus_server = Erlang::OtpPeer.new("venus_server@localhost")
 connection = venus_client.connect(venus_server)
 connection.send("venus_server",Erlang::tuple(client.pid,
 Erlang::num(17)))
 venus_age = connection.receive
 puts venus_age.doubleValue
end

erl-interface Client (Erlix)
require "erlix"
ErlixNode.init("client_node","venus")
connection=ErlixConnection.new("venus_server@localhost")
connection.esend("venus_server",ErlixTuple.new([ErlixPid.new(connection),
 ErlixInt.new(17)]))
t=Thread.start("thread recv"){ |name|
 while true do
 m=connection.erecv
 puts m.message
 end
}
t.join

JInterface Client (Connecting Languages)

This split screen shows the JInterface client we were just looking at (that uses the erlang.rb library from Ola
Biniʼs ʻConnecting Languagesʼ blog post) and a comparable Erlix client that can be used with C-Ruby. For each
JInterface method, thereʼs a corresponding Erlix call.

Erlix does not yet support Ruby-based servers, but that functionality is on the Erlix roadmap.

72

http://github.com/tarcieri/reia
Tony Arcieri

http://groups.google.com/group/reia

When a multi-lingual person is speaking or writing in one language and then inserts words or phrases from another language, linguists
call it “code switching.” I think thatʼs an apt name for the kind of language integration weʼve been looking at so far: programs that are
predominantly written in one language with some calls to a library written in another language.

Another form of linguistic “code switching” is mixing the words from one language with the grammar of another.

Reia, a language created by Tony Arcieri, exemplifies this second form of code switching. Its syntax is Ruby-like, but it runs on the
Erlang virtual machine. The ways Tony combines languages are fascinating. Rubyʼs dot operator (.) is sometimes referred to as a
“message-sending” operator as opposed to a “method invocation” operator, and in an early version of Reia Tony experimented with
modeling objects as Erlang processes using a dot (.) as the notation for sending messages to them in lieu of Erlangʼs send operator
(!). The roadmap for Reia calls for revisiting this vision of “concurrent objects”.

Another example of “code switching” in Reia is support for destructive assignment on top of the Erlang VM. In other words, Reia
allows you to assign a value to a variable that already has a value, which is expressly prohibited in Erlang.

73

Reia: demo.re

Erlang: demo.erl
-module(demo).
-export([test/0]).

test() ->
 X = 23,
 Y = 4 * X + 3,
 X = 19,
 io:format("~p~n", [X]).

module Demo
 def test
 x = 23
 y = 4 * x + 3
 x = 19
 "#{x}".puts()
 end
end

Demo.test()

Towards the beginning of this talk, we looked at how Erlang creator Joe Armstrong demonstrated Erlangʼs
single assignment policy in his Programming Erlang book.

The source code for this console-based demo is on the top of this slide in the form of a function in an Erlang
module.

The contents of a file called “demo.re”, a Reia module based on the same code, is displayed on the bottom half.

As you can see, the module definition conventions in Reia are very similar to those for Ruby. Notice that
Erlangʼs statement separators (commas) and terminator (period) are not used in the Reia version. The ability to
place free-standing code in a file with a module definition (the invocation of Demo.test()) is also Ruby-like.

74

Reia

Erlang
-module(demo).
-export([test/0]).

test() ->
 X = 23,
 Y = 4 * X + 3,
 X = 19,
 io:format("~p~n", [X]).

module Demo
 def test
 x = 23
 y = 4 * x + 3
 x = 19
 "#{x}".puts()
 end
end

Demo.test()

$ erl -run demo test -run init stop -noshell
{"init terminating in do_boot",{{badmatch,19},[{demo,test,
0},{init,start_it,1},{init,start_em,1}]}}

$ reia reia_demo.re
Loading standard library from /Users/aok/reia/lib... done.
19

Not surprisingly, when we run the Erlang version (by passing the module name and the function name to erl
following the -run flag), we see the same “badmatch” error we saw in Joeʼs console session. The statement
that prints out the value of X after the attempt to change its value to 19 is never reached.

The Reia version runs with no problem. The initial value of x is 23, but the final value that prints out is 19.

75

 [{module,1,'Demo',
 [{module_type,module}],
 [{function,3,test,2,
 [{clause,3,
 [{tuple,3,[]},{var,1,'_'}],
 [],
 [{match,3,{var,3,x_0},{integer,3,23}},
 {match,4,
 {var,4,y_0},
 {op,4,'+',
 {op,4,'*',{integer,4,4},{var,4,x_0}},
 {integer,4,3}}},
 {match,5,{var,5,x_1},{integer,5,19}},
 {match,6,{var,6,x_2},{integer,6,20}},
 {match,7,{var,7,x_3},{integer,7,17}},
 {call,8,
 {remote,8,{atom,8,reia_dispatch},{atom,8,call}},
 [{call,8,
 {remote,8,
 {atom,8,reia_dispatch},
 {atom,8,call}},
 [{cons,8,{var,8,x_3},{nil,8}},
 {atom,8,join},
 {tuple,8,[]},
 {atom,8,nil}]},
 {atom,8,puts},

 {tuple,8,[]},
 {atom,1,nil}]}]}]}]},

Reia
def test
 x = 23
 y = 4 * x + 3
 x = 19
 x = 20
 x = 17
 "#{x}".puts()
 end

This slide shows whatʼs going on behind the scenes to keep the Erlang VM from rejecting the test function. I
added a few additional pattern matching statements to test for good measure, and then I rigged, reiac, the
Reia compiler, to print out the abstract syntax tree (AST) for the Demo module.

You can see that every time Reia encounters the pattern-matching operator (=) with x on the left-hand side, it
creates a new variable (ie. _x_0, _x_1, _x_2, etc.) to bind the right-hand side value to in the “match”
expression it generates. The variables prefixed with “_x” (which represent various versions of x) and their
values are stored in a dictionary. When puts is called to print out x on the last line of the test function, Reia
knows to use the latest version, _x_3.

76

Ruby/Scala Interop via JRuby

Because Scala runs on both the Java Virtual Machine (JVM) and the .NET Common Language Runtime (CLR), Ruby
\Scala interop can be achieved via either JRuby or IronRuby. Iʼm going to focus using JRuby to bridge Scala and Ruby.

The Java Platform supports a common hosting API for scripting languages that run on the JVM. Any language that
implements a scripting engine that complies with Java Service Request (JSR) 223 can be hosted in a Java application.

JSR 223 enables developers to support multiple scripting languages with the same host source code.

JRuby is packaged with an implementation of the JSR 223 API, and pretty much the same API calls can be used to invoke
JRuby methods from within Java code or Scala code.

JRubyʼs JSR 223 implementation is built on top of its own core embedding API, known as RedBridge, which is more
powerful and offers more configuration options than JSR 223. RedBridge also works similarly with both Java and Scala.

77

object Mars extends Application {
val container = new ScriptingContainer()
val receiver = container.runScriptlet(PathType.CLASSPATH,
 "mars.rb")
val result = container.callMethod(receiver, “mars_age”, 17.0,
 classOf[java.lang.Double])
System.out.println(result)
}

def mars_age(age)
 age / (686.98/365.26)
end

RedBridge

mars.rb

If the Ruby method mars_age on the top of this slide was in a file called “ruby.rb”, then the Scala code on the
bottom of the slide is the RedBridge code that could be used to invoke it.

Calling a top-level method involves obtaining a scripting engine, loading the Ruby source as a scriptlet, and
calling the callMethod method with the following arguments: a reference to the loaded Ruby code, the
method name, the arguments for the method, and a return type for the method return value.

78

ScalaRuby

http://www.codecommit.com/blog/ruby/jruby-interop-dsl-in-scala

JRuby Interop DSL in Scala
Daniel Spiewak

Daniel Spiewak detailed his thoughts about what natural JRuby\Scala interop might look like in a post called
“JRuby Interop DSL in Scala” on his blog, Code Commit, and he posted the source code for a library he wrote
that incorporates his ideas, called ScalaRuby.

79

object Main extends Application with JRuby {
 require("mars")
 val years:Double = 'mars_age(17.0)
 println(years)
}

ScalaRuby

object Mars extends Application {
val container = new ScriptingContainer()
val receiver = container.runScriptlet(PathType.CLASSPATH,
 "mars.rb")
val result = container.callMethod(receiver, mars_age, 17.0,
 classOf[java.lang.Double])
System.out.println(result)

RedBridge

The RedBridge-style method invocation we just looked at is on the bottom half of this slide, and the code
required to invoke the same method using Danielʼs ScalaRuby library is on the top half.

In the next couple of slides weʼll do a line by line comparison.

80

object Main extends Application with JRuby {
 require("mars")

}

ScalaRuby

object MarsScala extends Application {
val container = new ScriptingContainer()
val receiver = container.runScriptlet(PathType.CLASSPATH,
 "mars.rb")
val arg = 17.0
val result = container.callMethod(receiver, mars_age, arg,
 classOf[java.lang.Double])
System.out.println(result)

RedBridge

Being able to use require to make a Ruby file accessible to a Scala program via ScalaRuby is a nice touch.
The ScalaRuby libraryʼs require creates a string consisting of “require” and the base filename that it is passed
(for example, in this case, “require ʻmarsʼ” would be constructed) and passing that string to the JSR 223
scripting API call that enables arbitrary Ruby code to be evaluated. In addition to providing an element of Ruby-
like look and feel, this implementation has the advantage of being able to find files in locations on Rubyʼs load
path, as well as those referenced on the CLASSPATH.

The RedBridge code that loads a script is considerably more verbose.

81

object Main extends Application with JRuby {
 require("mars_ruby")
 val years:Double = 'mars_age(17.0)
 println(years)
}

ScalaRuby

object MarsScala extends Application {
val container = new ScriptingContainer()
val receiver = container.runScriptlet(PathType.CLASSPATH,
 "mars_ruby.rb")
val arg = 17.0
val result = container.callMethod(receiver, mars_age, 17.0,
 classOf[java.lang.Double])
System.out.println(result)

RedBridge

This slide highlights my favorite thing about Danielʼs library.

It shows how the ScalaRuby library allows you to call a Ruby method from Scala just about the same way you
would call it in Ruby (or just about the same way you would call a Scala function from Scala) -- with the
exception of the single quote prefixing the method name, which designates the method identifier as a Scala
symbol. Scala symbols are set off with a single quote the same way that Ruby symbols are prefixed with a
colon.

Iʼm going to go over the two Scala features that make this quasi-natural method call possible, and then Iʼll
explain how Daniel makes use of them in his DSL.

82

scala> 2
res0: Int = 2

scala> 2.compare(1)
res1: Int = 1

scala> 2.compare(2)
res2: Int = 0

scala> 2.compare(3)
res3: Int = -1

The first feature you need to be aware of in order to understand how Danielʼs library works is Scalaʼs implicit
conversion mechanism.

In Scala, numeric literals are instances of the class Int. The implicit conversion mechanism makes it appear
that itʼs possible to call methods like max and compare on numeric literals, even though these methods are not
defined for Ints.

Hereʼs a console session showing what happens when compare is called on an Int: Depending on whether
the number passed to compare is less than, equal to or greater than the Int that compare is called on, either
1,0 or -1 is returned. Looking at this console session, youʼd never guess that thereʼs no Int#compare .

83

 implicit def intWrapper(x: Int)= new runtime.RichInt(x)

When Scala determines that a method does not exist for a particular receiver, it checks to see if an implicit
conversion is defined to transform the receiver into an object that knows about the method call.

Hereʼs the implicit conversion that transforms an Int into a scala.runtime.RichInt, which does support
compare.

Like all implicit conversion definitions, this one includes the implicit keyword and a method that transforms
an object of one type to an object of another type.

84

scala> val ages = Array(17.0, 7.0)
res0: Array[Double] = Array(17.0, 7.0)

Parentheses, Parameters & Apply

Array.apply(17.0, 7.0)

Invokes

The second Scala feature weʼre going to look at before I can go into how function invocation works in Danielʼs
DSL is the way Scala handles parentheses. When Scala sees an object followed by a set of parentheses and
there are one or more apply methods defined for that object, then Scala invokes the apply method with an
arity that matches the number of items between the parentheses.

Anywhere that parentheses are used to delimit method parameters, apply can be called directly, instead.

The apply method is sometimes defined as a factory method. In this Scala console session, itʼs being used to
create an Array. Incidentally, I populated ages with 17.0 and 7.0 because those numbers represent the ages
of Ruby and Scala, respectively.

85

scala> val ages = Array(17.0, 7.0)
res0: Array[Double] = Array(17.0, 7.0)
scala> ages(0)
res1: res1: Double = 17.0

Array.apply(17.0, 7.0)

Invokes

ages.apply(0)

Invokes

Parentheses, Parameters & Apply

The apply method is also frequently used by instances of collections classes to return an item from the
collection at a specified index number.

Here a call to ages(0), which invokes ages.apply(0) and returns the value of the first element in ages, is
added to the console session that I began by creating the Array called ages.

86

scala> val venusAge = (age:Double) => age * (365.26/224.68)
venusAge: (Double) => Double = <function>
scala> venusAge(17.0)
res0: Double = 27.63672779063557

venusAge.apply(17.0)

Invokes

Parentheses, Parameters & Apply

Here, apply is called on a function object: venusAge. One or more variable names followed by a colon and
the variable type enclosed in parentheses (eg. (age:Double)) represent a function parameter list. The code
to the right of the => represents the function body.

As with any other type of object, when Scala encounters one or more values enclosed in parentheses directly
following a function object, like venusAge, it invokes apply on that function, passing along the specified
argument list. When apply is called on a function, the logic in the body of the function gets executed.

87

ScalaRuby
def mars_age(age)
 age / (686.98/365.26)
end

val years:Double = 'mars_age(17.0)

So now we have all the pieces we need to understand how Danielʼs Scala\Ruby DSL manages to invoke
method calls in Ruby scripts, like the mars_age method shown in the red box, with the syntax shown in the
green box.

88

ScalaRuby
def mars_age(age)
 age / (686.98/365.26)
end

val years:Double = 'mars_age(17.0)

implicit def sym2Method[R](sym:Symbol):(Any*)=>R = send[R](sym2string(sym))

Daniel defines the sym2Method implicit conversation to convert a Symbol into a instance of
com.codecommit.scalaruby.RubyMethod, a class that wraps Ruby methods.

The conversation is triggered because the symbol is followed by parameters flanked by parentheses. Upon
detecting the parentheses, Scala sets out to call apply on the symbol. Since there is no apply method defined
for Scalaʼs Symbol class, Scala finds the implicit conversion Daniel defined.

89

ScalaRuby
def mars_age(age)
 age / (686.98/365.26)
end

val years:Double = 'mars_age(17.0)

implicit def sym2Method[R](sym:Symbol):(Any*)=>R = send[R](sym2string(sym))

def send[R](str:String)={new RubyMethod[R](str2sym(str))}

This slide shows how the source for the send method specified in the conversion definition creates an instance
of com.codecommit.scalaruby.RubyMethod, which, as we will see, does include a definition of apply.

After creating an instance of com.codecommit.scalaruby.RubyMethod based on the symbol (in this case,
‘mars_age), Scala will invoke its apply method and pass it any arguments enclosed in the parentheses that
caused the implicit conversation to fire.

90

ScalaRuby
def mars_age(age)
 age / (686.98/365.26)
end

val years:Double = 'mars_age(17.0)

implicit def sym2Method[R](sym:Symbol):(Any*)=>R = send[R](sym2string(sym))

def send[R](str:String)={new RubyMethod[R](str2sym(str))}

class RubyMethod[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*) = call(params.toArray)
 ...

 private[scalaruby] def call(params:Array[Any]):R = {
 // JRuby’s JSR 223 Scripting API Calls
 }
}

The apply method for an instance of the Danielʼs com.codecommit.scalaruby.RubyMethod class

91

ScalaRuby
def mars_age(age)
 age / (686.98/365.26)
end

val years:Double = 'mars_age(17.0)

implicit def sym2Method[R](sym:Symbol):(Any*)=>R = send[R](sym2string(sym))

def send[R](str:String)={new RubyMethod[R](str2sym(str))}

class RubyMethod[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*) = call(params.toArray)
 ...

 private[scalaruby] def call(params:Array[Any]):R = {
 // JRuby’s JSR 223 Scripting API Calls
 }
}

... wraps a call to the method in the Ruby script (in this case, mars_age) using JRubyʼs JSR 223 scripting API
and passing it the method name and the parameters.

92

http://github.com/mcamou/scuby

Scuby

Daniel painstakingly tackles a number of integration pain points in addition to the ones I covered, including those related to calling
methods on Ruby objects -- but he cautions about his library: “Remember that it is extremely untested and very experimental”.

One of the issues he chose to let go, citing his right as a blogger presenting a proof-of-concept, is one he characterized as a
“concurrency killer.” He wrote the library using an early version of JRubyʼs JSR 223 scripting engine with an implementation that
differs considerably from the current RedBridge-based one. That older implementation specifies that variables shared across the host
\scripting language barrier should be prefixed with a “$”, which makes them global variables in Ruby. As a simplification, Daniel
decided to name all method parameters sequentially, starting with “$res0” for the first parameter for a method call and using “$res1”
through “$resN”, depending on how many arguments the method takes.

Mario Camou and his colleagues at abstra.cc felt that Danielʼs prototype could help them with a polyglot system they were building,
but they needed to do a lot of re-writing to address the concurrency issues and port it to recent versions of Scala and JRuby. They
also added a number of innovations of their own.

abstra.cc called their library “Scuby”, and they are using it in production. Scuby was released on github during RubyConf 2009.

93

 // Create a proxy object for the Ruby BackEnd class
 val backEnd = RubyClass('BackEnd)

 // Call a Ruby method with no parameters
 backEnd ! 'prepare_data

http://github.com/mcamou/scuby

Scuby

This slide shows a couple of things you can do with Scuby, beginning with obtaining a reference to a Ruby class
(BackEnd is an actual Ruby class, defined in an .rb file).

Scuby enables you to call methods on a proxy created via RubyClass using the ! operator -- directly referencing
Erlangʼs send operator and thereby combining idioms from 3 of the languages I am covering: Scala, Erlang and Ruby.

This first release of Scuby focuses on constructs that absta.cc uses most often, like being able to call methods on objects
easily.

Because abstra.cc didnʼt need to use top-level functions in their production code, Scubyʼs syntax for a top-level method
call is not as slick as the symbol-based ScalaRuby notation we just analyzed, but making top-level method calls more
natural is on the roadmap for the future, along with enabling developers to pass a JRuby block where Scala expects a
function and wrapping JRuby collections for Scala consumption.

94

http://www.codecommit.com/blog/ruby/integrating-scala-into-jruby

Integrating Scala into JRuby
Daniel Spiewak

In addition to exploring Scala as a host language for JRuby, Daniel Spiewak has also given a lot of thought to
what constitutes a good interop experience when accessing Scala from JRuby.

He created a library that enables Ruby Procs and collections to behave more like their Scala counterparts (ie
Scala functions and Scala collections) and that also enables JRubyists to integrate Scala code into their
polyglot applications using idiomatic JRuby.

Before we look at what Danielʼs library brings to the table, letʼs take a look at what you can do with Scala in a
JRuby console session, out of the box.

95

object Venus {
 def venusAgeMethod(age:Double):Double = age * (365.26/224.68)
 val venusAgeFunction = (age:Double) => age * (365.26/224.68)
}

Hereʼs a Scala version of the Venus library for converting Earth years to Venus years.

It includes a Scala method definition as well as a Scala function definition. The method and the function provide the same
functionality, but Iʼm including both in the Scala source because you need to invoke them differently from within JRuby.

Iʼve chosen to define the Venus library as a singleton object. By virtue of my using the object keyword the way I did,
Scala will create a singleton Venus object with all static methods (well, its one method will be static).

The method, venusAgeMethod, only exists within the context of the singleton objectʼs class.

On the other hand, the function, venusAgeFunction, is a standalone object assigned to a variable, and can be passed
to functions and methods that accept function arguments. In many ways, the function is no different than any other
property, of any other type, like an Int or a String, that you might define for the Venus object and that you can pass to
a function or a method as an argument.

96

object Venus {
 def venusAgeMethod(age:Double):Double = age * (365.26/224.68)
 val venusAgeFunction = (age:Double) => age * (365.26/224.68)
}

irb(main):001:0> require 'scala-library.jar'
=> true
irb(main):002:0> require 'venus.jar'
=> true
irb(main):003:0> Java::Venus.venusAgeMethod(17.0)
=> 27.63672779063557
irb(main):003:0> Java::Venus.venusAgeFunction.apply(17.0)
=> 27.63672779063557

JRuby

The bottom half of the slide shows how to invoke venusAgeMethod and venusAgeFunction in an interactive jirb session.

I have “required” scala-library.jar, which is part of the standard Scala distribution, but you can skip this step if you add scala-library.jar
to JRubyʼs classpath. I have also “required” venus.jar. After compiling the Venus library, I used the jar tool to package them it in a file
called “venus.jar”.

The Venus library can be accessed with syntax that resembles Ruby notation for nested modules. Because I have not placed Venus
in a package, all I need to do is prefix its name with “Java::”. Additional package names would be appended together, following
“Java::”. If I had placed Venus in a package called “Demo.Test”, I would have needed to follow “Java::” with “DemoTest::” (ie
Java::DemoTest::Venus).

To invoke the method logic for venusAgeMethod, you can just use the dot notation to call venusAgeMethod on Venus.

You use the dot notation to access venusAgeFunction and then call apply on venusAgeFunction to invoke the function logic.

97

object Venus {
 def venusAgeMethod(age:Double):Double = age * (365.26/224.68)
 val venusAgeFunction = (age:Double) => age * (365.26/224.68)
}

irb(main):001:0> require 'scala-library.jar'
=> true
irb(main):002:0> require 'venus.jar'
=> true
irb(main):003:0> Java::Venus.venusAgeMethod(17.0)
=> 27.63672779063557
irb(main):003:0> Java::Venus.venusAgeFunction.apply(17.0)
=> 27.63672779063557
irb(main):003:0> Java::Venus.venus_age_method(17.0)
=> 27.63672779063557
irb(main):003:0> Java::Venus.venus_age_function.apply(17.0)
=> 27.63672779063557

JRuby

As this slide shows, you can use either the Ruby method naming convention of separating the words that
constitute a method name with underscores or you can use camel case style naming convention favored by
Scala and Java.

I tend to use the Scala-style naming conventions when invoking methods or functions that were written in Scala.
I think being able to use the “dot” notation makes the interaction with Scala-based objects and functions seem
easy enough. Taking the step of “Rubifying” the Scala function or method names feels to me like taking an
English word or phrase that has its origins in another language, like “rendezvous” and using and pronouncing
the “rend” to rhyme with “end” and the “dez” to rhyme with “fez.”

98

> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:0xeb04d34>
> ages.update(“Ruby”, 17)
=> nil
=> ages.update(“Scala”, 7)
=> nil
> mars_ages = ages.mapValues {|age| age / (686.98/365.26)}
=> #<#<Class:01x29516070>:0x49dd63c9>
> mars_ages.mk_string(“, “)
=> "Ruby -> 9.038720195638883, Scala -> 5.316894232728754"

JRuby Support for
Passing Ruby Blocks to Scala Methods

In many cases, no special Scala/Ruby bridge code is needed in order to invoke a Scala method that accepts a function argument and pass it a Ruby
block in lieu of a Scala function.

An example of a Scala method that takes a function argument is mapValues, which can be called on a Scala ListMap to generate a ListMap with
the same keys as the original ListMap pointing to values that are the result of applying the supplied function to each value of the original ListMap.

The first few lines in this jirb session create a ListMap and populate it. ListMapʼs update method takes a key parameter and a value parameter
and is used to add the specified key/value pair to the ListMap. Here, the ListMap is populated with keys that are the names of programming
languages (“Ruby” and “Scala”) and values that are the ages of those languages. As I noted earlier, Ruby is 17 years old. Scala is 7 years old.

Here, mapValues is used to generate a ListMap with keys that are names of programming languages and with corresponding values that are the
ages of those languages in Mars years.

Notice that I was able to specify the calculation to perform on each value in the ListMap by passing a Ruby block to the Scala method mapValues
(ie {|age| age / (686.98/365.26)}).

The mk_string call returns a string representation of the key/value pairs in the ListMap, separated by the specified separator. As you can see, the
mars_age ListMap generated with mapValues contains the ages of the included languages in Mars years.

99

ok_button=JButton.new('OK')
ok_button.add_action_listener(ButtonAction.new)

Expects an ActionListener

JRuby Support for Java Interfaces

The reason why itʼs possible to pass a Ruby block to mapValues or any other Scala function or method that takes a function argument
has to do with the way that JRubyʼs built-in support for Java Interfaces works.

A Java interface defines a group of methods that any class that implements the interface needs to provide implementations for.

JButtonʼs add_Action_Listener is an example of a method that expects an interface to be passed to it. As the JavaDoc for
addActionListener shows, addActionListener takes an ActionListener argument, and as the JavaDoc for
ActionListener shows, ActionListener is an interface.

This slide actually shows the entire method summary for ActionListener. An ActionListener only needs to provide a definition
for a single method: actionPerformed.

The ActionListenerʼs actionPerformed method is invoked when the JButton is pressed. Linking a button to a particular
action is achieved by assigning it an actionListener with an actionPerformed implementation that carries out that action.

100

class ButtonAction
 include ActionListener
 def action_performed(e)
 puts "AOK!"
 end
end

ButtonAction implements ActionListner

JRuby Support for Java Interfaces

ButtonAction is a sample ActionListener implemented in JRuby. It meets the minimum requirements for
an ActionListener that can be passed to addActionListener. That is, it not only implements
actionPerformed, it includes ActionListener (via an include statement).

The include statement is important because Java does not support duck-typing. Even if a JRuby class
provides definitions for all of the methods required by an interface, Java will not recognize it as an
implementation of that interface if it doesnʼt reference the interface name in an include statement.

101

ok_button=JButton.new('OK')
ok_button.add_action_listener(ButtonAction.new)

class ButtonAction
 include ActionListener
 def action_performed(e)
 puts "AOK!"
 end
end

JRuby Support for Java Interfaces

If we pass a new ButtonAction to add_action_listener for ok_button, the text “AOK!” will be printed
out when the button is pressed.

102

ok_button=JButton.new('OK')
ok_button.add_action_listener(ButtonAction.new)

class ButtonAction
 include ActionListener
 def action_performed(e)
 puts "AOK!"
 end
end

{ puts “AOK!”}

JRuby Support for Java Interfaces

JRuby also provides a shortcut for supplying an interface implementation to a Java method that takes an
interface argument.

In lieu of requiring you to create a class that implements an interface and passing an instance of that class to a
method expecting that interface, JRuby allows you to supply the logic for an interfaceʼs required method in the
form of a Ruby block.

When JRuby detects that you have passed a block to a Java method that expects a class that implements an
interface, JRuby creates a class that implements the interface for you -- behind the scenes. JRuby uses the
body of the block as the method body.

This slide shows how I can simply pass the block {puts “AOK”} to add_action_listener if I want “AOK”
to be printed out when the button is pressed.

103

JRuby Support for Scala Traits
vis-a-vis Java Interfaces

So how does this handling of Java interfaces relate to Scala functions? The tie-in is that in Scala functions are represented as traits --
and Scalaʼs traits are comparable to Javaʼs interfaces.

In the Scala there is trait defined for a function that takes 0 arguments, a function that takes one argument, a function that takes 2
arguments -- up through a function that takes 22 arguments.

This slide shows a portion of the Scaladoc for Function1, which represents a function that takes a single argument. The “t” to the
right of the “Function1” label stands for “Trait” to signify that Function1 is a trait.

One main difference between traits and interfaces is that traits may provide implementations for all or any of their constituent methods,
while interfaces do not supply any implementations. Function1 provides implementations for 3 of its methods. It does not provide an
implementation for the apply method, which I have circled to highlight that it is tagged as abstract.

Ultimately, Scala code compiles into Java bytecode -- and at the Java bytecode level a trait is represented by interface that includes
method signatures for all of the traitʼs methods, both abstract and concrete -- as well as classes that use the definitions provided by
the trait to the implement the concrete methods. The Scala compiler delegates to these generated classes when it encounters a class
that extends a trait (extend is the Scala key word you use to incorporate a trait) that includes concrete methods.

104

ok_button=JButton.new('OK')
ok_button.add_action_listener { puts “AOK!”}

JRuby Support for Java Interfaces

JRuby Support for Scala Traits

> mars_ages = ages.mapValues {|age| age / (686.98/365.26)}
=> #<#<Class:01x29516070>:0x49dd63c9>
> mars_ages.mk_string(“, “)
=> "Ruby -> 9.038720195638883, Scala -> 5.316894232728754"

Iʼm only able to tap JRubyʼs Java interface handling when I supply a Ruby block argument to mapValues in
the jirb session on the bottom half of this slide because mapValues calls apply on its argument, and apply
is an defined as an abstract method on the Function1 trait.

JRuby does not distinguish between an abstract method that started life as part of a trait in a Scala source file
and one that originated in a Java interface definition. Just as JRuby creates an instance of a class that
implements actionPerformed based on the logic in the body of the block passed to addActionListener
for the code fragment on the top half of the slide, it creates a class that implements apply with the body of the
block passed to mapValues as the method body in the jirb session on the bottom part of the slide.

If instead of apply, the mapValues logic called one of Function1ʼs concrete methods ...

105

: Using Function1#compose

... that is, if it called andThen or compose, (which I circled here, along with itʼs description), youʼd see an error in the
console.

The concept that a Scala trait can implement one or more of its methods is outside of JRubyʼs frame of reference. Not only
does JRuby not know how to access the generated classes that implement a traitʼs concrete methods, JRuby is not aware
that these classes even exist.

What if you wanted to pass a Ruby block to a Scala method that takes a function argument and calls compose on that
function argument?

This is where Danielʼs library, called scala.rb, comes in. It enables you to create Ruby Proc wrappers that behave just like
Scala functions for most intents and purposes.

Iʼm going to show sample JRuby code that calls compose on one of these Ruby Proc wrappers. But first, Iʼll show how
compose is used in Scala. It is part of Scalaʼs support for function composition. It creates a composite function that passes
the results of one function to another.

106

f(g(x))

: Using Function1#compose

Here Iʼve blown up the Scaladoc description of Function1ʼs implementation of compose.

If f is a function that takes a single argument and g is a function that takes a single argument, then calling
compose on f with g as the argument to compose yields a third function that takes a single argument.

If you invoke this third function and pass it an argument called x, it will do the following:
1. invoke g with x as its argument and
2. invoke f with the return value of the call to g as its argument.

107

scala> val planetCatAge = (planetAge: (Double) => Double) =>
 | {
 | val catAge = (age:Double) => age * 6.2
 | planetAge.compose(catAge)
 | }
planetCatAge: ((Double) => Double) => (Double) => Double =
<function1>

: Using Function1#compose

This multi-line entry in a Scala console shows an example of a Scala function that leverages compose.

It takes a single argument. Its argument, which is referenced as planetAge in the function definition,
represents a function that calculates an age on a particular planet.

The planetCatAge function defines a local variable called catAge, which represents a function that returns
the age passed to it in cat years.

The planetCatAge function then calls compose on planetAge with catAge as the argument to compose.
This creates a new function that calculates an age in cat years on a planet.

Iʼll show planetCatAge in action on the next slide, so you can see how it works.

108

: Using Function1#compose

scala> val venusAge = (age:Double) => age * (365.26/224.68)
venusAge: (Double) => Double = <function1>

scala> val venusCatAge = planetCatAge(venusAge)
venusCatAge: (Double) => Double = <function1>

scala> venusCatAge(17.0)
res1: Double = 171.34771230194056

Using planetCatAge in Scala

scala> val planetCatAge = (planetAge: (Double) => Double) =>
 | {
 | val catAge = (age:Double) => age * 6.2
 | planetAge.compose(catAge)
 | }
planetCatAge: ((Double) => Double) => (Double) => Double =
<function1>

The planetCatAge function definition is displayed on the top part of this slide for reference.

In the console session on the bottom part of this slide, as a first step for using planetCatAge to create a
function that calculates an age in cat years on Venus, I created a function to pass to planetCatAge. Itʼs the
function that returns the age passed to it in Venus years, which weʼve seen a number of times. In this console
session, I called it venusAge.

109

: Using Function1#compose

scala> val venusAge = (age:Double) => age * (365.26/224.68)
venusAge: (Double) => Double = <function1>

scala> val venusCatAge = planetCatAge(venusAge)
venusCatAge: (Double) => Double = <function1>

scala> venusCatAge(17.0)
res1: Double = 171.34771230194056

Using planetCatAge in Scala

scala> val planetCatAge = (planetAge: (Double) => Double) =>
 | {
 | val catAge = (age:Double) => age * 6.2
 | planetAge.compose(catAge)
 | }
planetCatAge: ((Double) => Double) => (Double) => Double =
<function1>

Next, I passed venusAge to planetCatAge to generate a new function that takes an age as a parameter and
returns that age in cat years on Venus.

Since a Scala interactive console session shows the type of each entered expression, we can confirm that
passing venusAge to planetCatAge yielded a new function. Scalaʼs notation for a function that takes a
Double and returns a Double is:(Double) => Double.

110

: Using Function1#compose

scala> val venusAge = (age:Double) => age * (365.26/224.68)
venusAge: (Double) => Double = <function1>

scala> val venusCatAge = planetCatAge(venusAge)
venusCatAge: (Double) => Double = <function1>

scala> venusCatAge(17.0)
res1: Double = 171.34771230194056

Using planetCatAge in Scala

scala> val planetCatAge = (planetAge: (Double) => Double) =>
 | {
 | val catAge = (age:Double) => age * 6.2
 | planetAge.compose(catAge)
 | }
planetCatAge: ((Double) => Double) => (Double) => Double =
<function1>

In the final line of this Scala console session, we pass the age 17.0 to venusCatAge and see that the
equivalent of 17 Earth years in cat years on Venus is around 171.35.

Now weʼre ready invoke planetCatAge in a jirb session, with a Ruby Proc wrapper passed in to supply the
planet age calculation in lieu of a Scala function.

111

object SpaceCats {
 val planetCatAge = (planetAge: (Double) => Double) =>
 {
 val catAge = (age:Double) => age * 6.2
 planetAge.compose(catAge)
 }
}

> mars_age = proc {|age| age / (686.98/365.26)}

> mars_cat_age = Java::SpaceCats.planetCatAge.apply(mars_age.to_function)

> mars_cat_age.apply(17.0)
=> 97.5413922022432

JRuby

Using a Ruby Proc Wrapper in Lieu of Function1

I placed planetCatAge inside a singleton object I named SpaceCats. On the top half of this slide is the
source for SpaceCats, which I compiled and packaged in a jar so I could access it from a jirb session.

To save space Iʼm not going to show the require statements I used to allow me to access the jar containing
SpaceCats and Danielʼs library. You can find the full source for this and the rest of the examples at: https://
github.com/A-OK/RubyIsFromMars

In the jirb session on the bottom half of the slide, Iʼve created mars_age, a Proc to pass to planetCatAge
using scala.rbʼs Proc wrapper.

112

object SpaceCats {
 val planetCatAge = (planetAge: (Double) => Double) =>
 {
 val catAge = (age:Double) => age * 6.2
 planetAge.compose(catAge)
 }
}

> mars_age = proc {|age| age / (686.98/365.26)}

> mars_cat_age = Java::SpaceCats.planetCatAge.apply(mars_age.to_function)

> mars_cat_age.apply(17.0)
=> 97.5413922022432

JRuby

Using a Ruby Proc Wrapper in Lieu of Function1

Next, on the line highlighted in red, I use planetCatAge to create mars_cat_age, a Scala function that returns its age
argument in cat years on Mars.

Even with Danielʼs library, I canʼt pass a Proc like mars_age to planetCatAge directly. But I can use the to_function
call, which the red arrow is pointing to, to obtain a Proc wrapper that can be passed to planetCatAge. The Proc
wrapper exposes all the methods a Scala Function1 exposes.

Notice that I called apply on planetCatAge to invoke it. As I discussed earlier, a Scala functionʼs apply
implementation executes the functionʼs logic. In Scala, you rarely see an explicit call to apply because parentheses
following a function name automatically trigger a call to the functionʼs apply method. The parentheses do not translate to
an apply call in JRuby, so apply must be called explicitly in order to invoke a Scala function.

Just as planetCatAge returned a function that calculates an age in cat years on Venus when we passed it the
venusAge function in the Scala console, planetCatAge creates a function that returns an age in cat years on Mars
when we pass it the mars_age Proc wrapper.

113

object SpaceCats {
 val planetCatAge = (planetAge: (Double) => Double) =>
 {
 val catAge = (age:Double) => age * 6.2
 planetAge.compose(catAge)
 }
}

> mars_age = proc {|age| age / (686.98/365.26)}

> mars_cat_age = Java::SpaceCats.planetCatAge.apply(mars_age.to_function)

> mars_cat_age.apply(17.0)
=> 56.0400652129611

JRuby

Using a Ruby Proc Wrapper in Lieu of Function1

On the last line of this session, I call apply on mars_cat_age to invoke its function logic, and I pass it the age
17.

Now that youʼve seen an example of how to use a wrapped Ruby Proc that supports Function1ʼs abstract
and concrete methods, Iʼll walk through the parts of Danielʼs scala.rb library that support this feature.

114

module ScalaProc
 class ScalaFunction
 def initialize(delegate)
 @delegate = delegate
 end

 def apply(*args)
 # invoke @delegate with args
 end
 end

 for n in 0..22
 eval "\
class Function#{n} < ScalaFunction
 include Scala::Function#{n}
end
"
 end
end

 scala.rb: Scala Function Wrappers from Ruby Procs

First weʼll account for Function1ʼs one abstract method: apply.

Danielʼs ScalaProc module contains the ScalaFunction class, which takes a Proc in its constructor and
implements apply to invoke the body of the Proc, which is represented by @delegate. Iʼm not showing all of
Danielʼs apply implementation here so I can fit more of the ScalaFunction definition onto this slide. Iʼm just
showing a comment that represents the actual logic.

115

module ScalaProc
 class ScalaFunction
 def initialize(delegate)
 @delegate = delegate
 end

 def apply(*args)
 # invoke @delegate with args
 end
 end

 for n in 0..22
 eval "\
class Function#{n} < ScalaFunction
 include Scala::Function#{n}
end
"
 end
end

 scala.rb: Scala Function Wrappers from Ruby Procs

To support Procs with different aritity, the code highlighted in this slide dynamically defines a different class to
correspond to each of the 23 function traits defined in the Scala source. The code will create a Function0
class, a Function1 class ... and so on, up to Function22.

Iʼm using the green arrow to point out that these Function0-22 classes are subclasses of ScalaFunction,
which, as we just discussed, wraps the Proc the you pass to its constructor and implements apply to invoke
the block linked to the Proc.

These Function0-22 are the Proc wrappers that you can pass to Scala code that expects a Scala function. Now
that weʼve seen that these wrappers inherit apply from ScalaFunction, weʼll look at how Danielʼs scala.rb
library handles a functionʼs concrete methods.

116

module ScalaProc
 class ScalaFunction
 def initialize(delegate)
 @delegate = delegate
 end

 def apply(*args)
 # invoke @delegate with args
 end
 end

 for n in 0..22
 eval "\
class Function#{n} < ScalaFunction
 include Scala::Function#{n}
end
"
 end
end

 scala.rb: Scala Function Wrappers from Ruby Procs

The classes Function0 through Function22 support the concrete methods implemented by their corresponding function traits by virtue of a
dynamically generated include statement (ie “include Scala::Function#{n}”).

The green arrows from each of the concrete methods (andThen, compose and toString) to the include statement represent scala.rbʼs support
for Scala mixins for JRuby.

JRubyʼs include keyword does not provide any support for concrete methods defined for Scala traits without some enhancements from Danielʼs
scala.rb library.

Daniel opens the Module class and redefines the include method to enable Ruby developers to mix in concrete methods defined on a Scala trait
much the same way that they are able to mix in methods defined on a Ruby module.

Daniel knows that the Scala compiler generates classes that implement a traitʼs concrete methods. Because he knows the naming conventions for
these generated classes, he can dynamically define methods that use Java reflection to invoke these generated implementations, and he can
dynamically add these method definitions to the class or module that the include statement targets.

117

module ScalaProc
 class ScalaFunction
 def initialize(delegate)
 @delegate = delegate
 end

 def apply(*args)
 # invoke @delegate with args end
 end
 end

 for n in 0..22
 eval "\
class Function#{n} < ScalaFunction
 include Scala::Function#{n}
end
"
 end
end

class Proc
 def to_function
 eval "ScalaProc::Function#
{arity}.new self"
 end
end

 scala.rb: Scala Function Wrappers for Ruby Procs

Hereʼs where Daniel opens up the Proc class to add the to_function definition, which returns an instance of
the Function0-22 class that wraps the Proc and exposes all of the methods exposed by a Scala function with
the same aritity as the Proc.

118

scala> val ages = Array(17.0, 7.0)
res0: Array[Double] = Array(17.0, 7.0)
scala> ages(0)
res1: res1: Double = 17.0

Collections, Parentheses, Parameters & Apply

ages.apply(0)

Invokes

The final feature of Danielʼs library that weʼre going to look at is its support for accessing and populating Scala collection
elements using square-bracket notation as opposed to the Scalaʼs standard parentheses-based notation.

We saw earlier that calling apply on an Array and passing it a number returns the element at that index number, and we
saw that as an alternative syntax, you can place the index number flanked by parentheses next to the Array name to
likewise get the element at that index number. I explained how the parentheses syntax actually triggers an apply
invocation.

The next few slides survey Scalaʼs use of parentheses for working with collection elements, where many other languages,
including Ruby, use square brackets.

The Array on the top of this slide is the Array of ages of programming languages Iʼve used in previous examples. The
first element, 17, represents how old Ruby is. The second element represents how many years Scala has been around.

119

scala> val ages = Array(17.0, 7.0)
res0: Array[Double] = Array(17.0, 7.0)
scala> ages(0)
res1: res1: Double = 17.0
scala> ages(0)=18

Collections, Parentheses, Parameters & Update

ages.update(0,18)

Invokes

Just as placing a number in parentheses next to a collection name triggers a call to apply on the collection, the “()=”
syntax invokes the update method on the collection. The collectionʼs update method sets the specified element value.

The update method takes 2 parameters: an index number and a value for the element at that index number (or if the
collection is Map-like vs. Array-like, update takes a key/value pair).

To assign a value to an element in an Array or Array-like collection, you can specify the index in parentheses next to
the name of the collection instance on the left-hand side of an equals sign and specify a value for the element at that
index number on the right-hand side of the equals sign. For example the following expression, sets the first element of
ages to 18: ages(0)=18.

For a Map-like collection, you specify a key/value pair with the key inside the parenthesis on the left-hand side of the
equals signs and a value to associate with that key on the right-hand side of the equals sign.

120

scala> val ages = Array(17.0, 7.0)
ages: Array[Double] = Array(17.0, 7.0)

scala> ages[0]
<console>:1: error: identifier expected but integer
literal found.
 ages[0]
 ^

scala> ages[0]=18
<console>:1: error: identifier expected but integer
literal found.
 ages[0]=18
 ^

Collections & Square-Bracket Notation

As you can see from the errors in this Scala console session, using square-bracket notation to get or set
collection values is not valid Scala syntax.

121

Getting & Setting Scala Mutable Collection Values
 from JRuby

> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:0x3a0db598>
> ages("Ruby")=17
SyntaxError: (irb):5: syntax error, unexpected '='

ages("Ruby")=17
 ^
! from (irb):5
> ages("Ruby")
NoMethodError: undefined method `ages' for main:Object
! from (irb):6
irb(main):007:0>

In this jirb session, Iʼve created a Scala ListMap.

As you can see from the console errors, parentheses-based syntax for getting and setting collection values (ie
“()” and “()=”) is not valid in JRuby. This is because JRuby is not wired to convert those patterns into apply
or update calls.

122

Getting & Setting Scala Mutable Collection Values
 from JRuby

> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:0x3a0db598>
> ages["Ruby"]=17
NoMethodError: undefined method `[]=' for
#<Java::ScalaCollectionMutable::ListMap:0x2278e185>
! from (irb):2
> ages["Ruby"]
NoMethodError: undefined method `[]' for
#<Java::ScalaCollectionMutable::ListMap:0x2278e185>
! from (irb):3

In this jirb session, I show how using square-bracket notation to populate or get values from Scala ListMap
is likewise not supported by JRuby.

123

> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:
0x3a0db598>
> ages.update("Ruby", 17)
=> nil
> ages.apply("Ruby")
=> 17

Getting & Setting Scala Mutable Collection Values
 from JRuby

So, when you work with Scala collections in JRuby without Danielʼs library, the only way you can get and set
values in those collections is via their apply and update methods, as Iʼve done in this jirb session.

I used update to pair the key “Ruby” with the value 17 (its age), and then Iʼve used apply to obtain the value
paired with the key “Ruby” (17).

124

scala.rb : support for []?

Mutable Collections
> require ‘scala.rb’
=> true
> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:
0x3a0db598>
> ages["Ruby"]=17
=> 17
> ages["Ruby"]
=> 17

In this slide, I show how I requiring Danielʼs library enabled me to use square-bracket notation in conjunction
with a Scala ListMap.

He added this feature to his library to make working with Scala collections in JRuby feel more ʻnaturalʼ.
Arguably, “ages[“Ruby”]=17” is more Ruby-like than “ages.update(0,17)”.

125

 alias_method :__old_method_missing_in_scala_rb__,
 :method_missing
 def method_missing(sym, *args)

 ...

 if str == '[]'
 eval(gen_with_args.call('apply', args))
 elsif sym.to_s == '[]='
 # doesn't work right
 eval gen_with_args.call('update', args)
 else
 __old_method_missing_in_scala_rb__(sym, args)
 end
 end

scala.rb : support for []?

Hereʼs the part of the scala.rb source that implements support for using []= and [] to get and set Scala
collection values from JRuby.

The lines highlighted in red show where method_missing is structured to invoke apply when it detects “[]”
and update when it detects “[]=”

But as Daniel points out in his blog post and as a comment in his code (notice the comment “#it doesnʼt work
right” sandwiched between the fragments highlighted in red), there are some issues with feature.

126

scala.rb : support for []?
Mutable Collections

> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:
0x3a0db598>
> ages.update("Ruby",17)
=> nil

> require ‘scala.rb’
=> true
> ages = Java::ScalaCollectionMutable::ListMap.new
=> #<Java::ScalaCollectionMutable::ListMap:
0x3a0db598>
> ages["Ruby"]=17
=> 17

There is subtle problem with using “[]=” in lieu of update with a mutable collection, and a not-so-subtle problem when youʼre working with
an immutable scala collection

If we take a close look what happens when you use apply vs. “[]” in an a jirb session, we can see that the two expressions have different
return values, which represent two very different ways of thinking about populating data structures.

The expression using update evaluates to nil, while “[]=” returns the value passed to it.

In Scala, the method signature for update (def update(key: A, value: B): Unit) indicates that its return type is Unit. The Unit
type in Scala is defined as a type that has only one potential value: (). A method that returns a Unit type in Scala is comparable to a
method in Ruby that returns nothing.

In Scala, an action that produces side-effects (eg changing the value of a data structure at a particular index) will return Unit as opposed to
a meaningful value to underscore that its side-effect is its Raison d'être.

In Ruby, “[]=” is classified as an “assignment-like” statement, and as such, it will always return the value on the right-hand side of the
expression.

127

Considering Assignment-like Setters in Ruby

> require './martian.rb'
 => true
> martian = Martian.new
 => #<Martian:0x192878>
> martian.age = 17
 => 17
> martian.age
 => 9.038720195638883

 class Martian
 attr_reader :age

 def age=(earth_age)
 @age= age / (686.98/365.26)
 end
end

martian.rb

Hereʼs an example that shows how Ruby evaluates an “assignment-like” expression when a setter is overridden to modify
the value it gets passed.

The Martian class that defines an assignment-like setter (age=) to assign the Mars years equivalent of its argument to
@age. If we call the setter in an jirb session, we can see that it the expression, “martian.age=17” evaluates to 17,
which is the value passed to it, even though the final expression in “age=” method evaluates to 9.038720195638883.

You might reasonably expect “martian.age=17” to return 9.038720195638883. But Ruby, which is so easily
customizable in so many ways, is hard-wired to always return the expression on the right-hand side of the equals sign for
an assignment-like setter.

Just as Ruby ensures that “age=” will return whatever is on the right-hand side of the equals sign, JRuby ensures that
“[]=” will return whatever is on the right-hand side of the equals sign, even though Danielʼs library intercepts the “[]=”call
in method missing to invoke update, which does not return anything.

128

 > martian_1 = Martian.new
=> #<Martian:0x197968>
> martian_2 = Martian.new
=> #<Martian:0x19675c>
> martian_1.age = martian_2.age = 17
=> 17
> martian_2.age
=> 9.038720195638883
> martian_3.age
 => 9.038720195638883

 class Martian
 attr_reader :age

 def age=(earth_age)
 @age= age / (686.98/365.26)
 end
end

martian.rb
Considering Assignment-like Setters in Ruby

Why does Ruby behave his way?

Consider Rubyʼs support for parallel assignment. If you wanted to create twin Martians, you could do something
like the code highlighted in red in this jirb session.

If “martian_2.age=17” were to return 9.038720195638883 instead of 17, then “ martian_1.age =
martian_2.age = 17” would pass 9.038720195638883 as the earth age to “ martian_1.age =”, thereby
setting the age of martian_1 to 4.80579192794413. In other words, if “martian_2.age=17” were to return
9.038720195638883 instead of 17, then martian_1 and martian_2 would not be the same age following the
parallel assignment statement.

129

scala.rb : support for []?

Immutable Collections
> ages = Java::ScalaCollectionImmutable::ListMap.new
=> #<Java::ScalaCollectionImmutable::ListMap:
0x1b6b7f83>
> ages.update("Ruby", 17)
=> #<Java::ScalaCollectionImmutable::ListMap::Node:
0x6446154e>

> require ‘scala.rb’
=> true
> ages = Java::ScalaCollectionImmutable::ListMap.new
=> #<Java::ScalaCollectionImmutable::ListMap:
0x2d95bbec>
> ages["Ruby"]=17
=> 17

While using “[]=” instead of update in a scala.rb-enhanced JRuby program doesnʼt work quite right for mutable Scala
collections, itʼs virtually unusable for immutable collections.

Consider the the immutable ListMap Iʼm creating in this jirb session. A immutable ListMapʼs update method returns
a version of the collection with the supplied key pointing to the supplied value. It does not modify the collection it is
invoked on.

Mirroring the Scala behavior for the update function, the update invocation on ages in the jirb session in this slide,
returns an immutable ListMap. Calling “[]=” on the other hand, returns 17.

In terms of human language, Iʼd say that mapping “[]=” to a update for a mutable collection is like leaving out
connotations or nuances in a translation. Itʼs similar to translating “venerable” as “old”.

However, I think using “[]=” in lieu of update for an immutable collection is comparable to a patently bad translation. Itʼs
like translating “a textbook case” literally as “a covering for a text book” instead of as “a classic example.”

130

scala.rb : support for []?

> require 'scala.rb'
=> true
> ages = Java::ScalaCollectionImmutable::ListMap.new
=> #<Java::ScalaCollectionImmutable::ListMap:0x6039a07>
> ages.send("[]=","Ruby",17)
=> #<Java::ScalaCollectionImmutable::ListMap::Node:
0x42d6f628>

Immutable Collections

Incidentally, if you use send to invoke “[]=” on a Scala collection in a scala.rb-enhanced JRuby program, the
whole expression will match the return value of update and not the value of the second argument to update.

In other words, the expression highlighted in red will return a ListMap that includes the key/value pair specified
in the send call -- and not 17.

But “ages.send("[]=","Ruby",17)” is arguably even less natural that “ages.update(“Ruby”,17)”.

Really, I donʼt think having to call update on a Scala collection is all that bad. In my opinion, being able to use
dot notation to invoke methods written in another language “phrase book style” constitutes a good interop
experience.

Overall, I think scala.rb is a successful prototype. The only reason I spent some time on the less-than-ideal
square-bracket feature is that it was a points to some interesting differences between Scala and Ruby.

131

Dynamic Language Runtime(DLR)
Common Langauge Runtime(CLR)

The path to Ruby and F# integration goes through IronRuby, the .NET implementation of Ruby.

The .NET platform facilitates language interoperability between its Common Language Runtime (CLR)
languages, like F#, and its Dynamic Language Runtime (DLR) languages, like IronRuby. Languages
implemented on top of either the DLR or the CLR both compile to .NET IL (Intermediate Language).

When I started doing research for this presentation, Microsoft was payrolling an IronRuby development team. I
was not aware the Microsoft was starting to cut back on the amount of resources it was devoting to IronRuby
development. Currently no one is paid to develop IronRuby fulltime. For more details about the status of
IronRuby, see the following blog posts by IronRuby core team member Jimmy Schementi: http://
blog.jimmy.schementi.com/2010/08/start-spreading-news-future-of-jimmy.html and http://
blog.jimmy.schementi.com/2010/10/leadership-of-ironruby-and-ironpython.html

132

#light

open IronRuby

let engine = Ruby.CreateEngine()
let scope = engine.CreateScope()

engine.Execute("
def mars_age(age)
 age / (686.98/365.26)
end
", scope) |> ignore

let marsAge = engine.Operations.InvokeMember(scope,
 "mars_age",[|box 17.0|])

printfn "%A" marsAge

F# Hosting Ruby
Mars.fs

The DLR Hosting API is similar to the mechanism that enables you to embed JRuby scripts in IronRuby code.
Here is how the same mars_age function defined in the mars.rb file we loaded into a Scala program would be
loaded into a Windows program and invoked.

We get a handle on the scripting engine, load the Ruby code via Execute, and use InvokeMember, passing it
the function name and an array of arguments.

133

 IronRuby Hosting F#
namespace Venus
module Calculations =
 let venusAge (age:double) : double =
 age * (365.26/224.68)

Venus.fs

>>> require "FSharpCore.dll"
=> true
>>> require "Venus.dll"
=> true
>>> Venus::Calculations.venusAge(17.0)
=> 27.6367277906356

Calling F# functions from IronRuby is not unlike calling methods on Scala classes from JRuby.

The top half of this slide shows the F# source file Venus.fs, which contains an F# version of the venusAge function we have seen in
Scala and Erlang. In an F# function definition, any arguments to an F# function are specified in parenthesis following the function
name, with a colon and the argument type appended to each argument name. A colon separates the argument list from the return type
specifier.

I used the F# compiler to generate a Dynamic Link Library (DLL) called Venus.dll.

I used Ruby require statements to load FSharp.dll, which contains the most commonly used FSharp routines and Venus.dll.

In the IronRuby irb session on the bottom of the slide, I inserted a double colon (::) between the namespace (Venus) and the module
name (Calculations) to create a fully qualified reference to the Calculations module. I could then access the venusAge
function using the dot (.) notation, and pass its parameter between parentheses.

134

>>> Venus::Calculations.venusAndCatAges(17.0)
=> (27.6367277906356, 105.4)
>>> venus_age, cat_age = Venus::Calculations.venusAndCatAges(17.0)
=> [(27.6367277906356, 105.4)]
>>> venus_age
=> (27.6367277906356, 105.4)
>>> cat_age
=> nil

namespace Venus
module Calculations =
 let venusAndCatAges(age:double) : double * double =
 venusAge(age), age * 6.2

Venus.fs

Handling Tuples in IronRuby

In addition to making phrase book-style calls to IronRuby library routines, you can access and manipulate F# data structures from your
IronRuby code, provided you know the particulars of the IronRuby syntax for the particular data structure.

The next few slides are about with handling tuples -- ordered, comma-delimited lists, often used to group related items.

The venusAndCatAges function shown on the top half of the slide returns a two-element tuple in which both elements are doubles,
with the first representing the supplied age on Venus and the second representing the supplied age in cat years. The asterisk in the
return types specifier is not the symbol for multiplication. Rather it is used to delimit types in the return tuple. The return type for a
function returning a pair of tuples -- a triple (tuple with 3 elements) consisting of two integers and a double and a pair consisting of a
string and a double -- would be: (int * int * double) * (string * double)

Looking at how irb evaluates the return value of venusAndCatAges (ie (27.6367277906356, 105.4)) on the bottom half of the
slide -- it looks like you should be able to utilize Rubyʼs parallel assignment support to assign values to ...

135

>>> Venus::Calculations.venusAndCatAges(17.0)
=> (27.6367277906356, 105.4)
>>> venus_age, cat_age = Venus::Calculations.venusAndCatAges(17.0)
=> [(27.6367277906356, 105.4)]
>>> venus_age
=> (27.6367277906356, 105.4)
>>> cat_age
=> nil

namespace Venus
module Calculations =
 let venusAndCatAges(age:double) : double * double =
 venusAge(age), age * 6.2

Venus.fs

Handling Tuples in IronRuby

...populate a venus_age variable and a cat_age variable in a single statement, as shown in the line high-
lighted in red in the slide.

As you can see, the session does not choke on this statement, however, as we will see in the next slide, you
canʼt always map a construct from one language to a construct in another language because they appear to be
comparable. It would be like making the mistake of assuming that “dove” in Hebrew is a kind of bird. Itʼs actually
the word for “bear.”

136

>>> Venus::Calculations.venusAndCatAges(17.0)
=> (27.6367277906356, 105.4)
>>> venus_age, cat_age = Venus::Calculations.venusAndCatAges(17.0)
=> [(27.6367277906356, 105.4)]
>>> venus_age
=> (27.6367277906356, 105.4)
>>> cat_age
=> nil

namespace Venus
module Calculations =
 let venusAndCatAges(age:double) : double * double =
 venusAge(age), age * 6.2

Venus.fs

Handling Tuples in IronRuby

If we let irb evaluate venus_age and cat_age, we can see that venus_age received the value of the entire
tuple, while cat_age is nil.

137

namespace Venus
module Calculations =
 let venusAndCatAges(age:double) : double * double =
 venusAge(age), age * 6.2

Venus.fs

>>> ages = Venus::Calculations.venusAndCatAges(17.0)
=> (27.6367277906356, 105.4)
>>> ages.item1
=> 27.6367277906356
>>> ages.item2
=> 105.4
>>> cat_age
=> nil

Handling Tuples in IronRuby

This slide shows how to access the individual items in the tuple returned by venusAndCatAges. Here, Iʼm
assigning the return value of venusAndCatAges to ages.

You can access the first element by invoking item1 on a tuple, and the second by using item2. If
venusAndCatAges returned a three-item tuple, you would be able to access the third item by invoking item3
on the tuple, and so on.

138

Luis Diego Fallas: ‘Some Notes on Using F# Code from IronPython’
http://langexplr.blogspot.com/2009/01/some-notes-on-using-f-code-from.html

F# Discriminated Union Example

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Now weʼll look at an example of how a more complex construct defined in F#, a discriminated union, can be
used in a Ruby program.

The sample F# code comes from a blog post by Luis Diego Fallas called “Some Notes on Using F# Code from
IronPython”. Using F# from IronPython is similar enough to using F# from IronRuby that I was able to translate
most of his sample code pretty easily. I like his discriminated union example because it is small enough to fit on
a couple of slides, but it still gives you an idea of how a discriminated union could be used to navigate any sort
of tree structure.

Before we look at how to use the MathExpr discriminated union from IronRuby, Iʼll show you how to use it in
F#.

MathExpr is an F# discriminated union definition that describes 3 types of MathExprs (ie Addition,
Subtraction and Literal) in terms of other MathExprs and standard types.

139

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Luis Diego Fallas: ‘Some Notes on Using F# Code from IronPython’
F# Discriminated Union Example

let ten = Literal(10.0)
let sum = Addition(Literal(1.0), Literal(2.0))

http://langexplr.blogspot.com/2009/01/some-notes-on-using-f-code-from.html

In the code fragment highlighted with a green background, Iʼm creating a couple of MathExprs, using the type
names almost the way you would use constructors -- with argument lists that mirror the type definitions.

I pass a double to Literal to create a Literal. An Addition MathExpr takes two Literals.

140

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Luis Diego Fallas: ‘Some Notes on Using F# Code from IronPython’
F# Discriminated Union Example

let sum = Addition(Literal(1.0), Literal(2.0))

let rec mathEval (m:MathExpr) =
 match m with
 | Addition(m1,m2) -> mathEval(m1) + mathEval(m2)
 | Subtraction(m1,m2) -> mathEval(m1) - mathEval(m2)
 | Literal(m1) -> m1

http://langexplr.blogspot.com/2009/01/some-notes-on-using-f-code-from.html

Typically developers write a function like the mathEval function highlighted with a green border to evaluate a
type defined via discriminated union.

Hereʼs a step-by-step description of how the mathEval function evaluates sum:

 First, mathEval finds that sum matches the Addition clause. Then mathEval hits the expression linked to
the Addition clause, which invokes mathEval with sumʼs first argument as an argument (ie Literal(1.0)).
The call to mathEval(Literal(1.0)) matches the Literal clause, which simply returns the Literalʼs
only argument, which, in this case is 1.0. Next mathEval is invoked with sumʼs second argument as an
argument, which yields, 2.0. The + indicates that the result of the mathEval(Literal (1.0)) and
mathEval(Literal(2.0)) should be added together, so sum evaluates to 3.0.

141

namespace Venus

module DU =

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Venus.fs

>>> Venus::DU::MathExpr.methods
=> ['new_literal', 'new_addition', 'new_subtraction',...]

Discriminated Union Example

If we include the MathExpr definition in a module called DU in Venus.fs and package it in Venus.dll, we can
access it in IronRuby by prefixing it with Venus::DU.

On the bottom part of the slide, Iʼm showing some of what irb displays when you invoke methods on
Venus::DU::MathExpr. IronRuby provides a method prefixed with “new_” for each alternative type defined in
the discriminated union.

142

Discriminated Union Example
namespace Venus

module DU =

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Venus.fs

>>> one = Venus::DU::MathExpr.new_literal(1.0)
=> Venus.DU+MathExpr+Literal
>>> two = Venus::DU::MathExpr.new_literal(2.0)
=> Venus.DU+MathExpr+Literal
>>> sum = Venus::DU::MathExpr.new_addition(one, two)
=> Venus.DU+MathExpr+Addition

Here Iʼve used these “new_” methods to create some MathExrprs in the IronRuby console -- a couple of
Literals and an Addition.

In the next slide Iʼm going to show some of the methods that get displayed in the console when you invoke
methods on sum , one of the Addition MathExprs I created.

143

>>> sum.methods
=> ['get_Item1', 'get_Item2', 'get_IsLiteral',
'get_IsSubtraction', 'get_IsAddition',...]

namespace Venus

module DU =

type MathExpr =
 | Addition of MathExpr * MathExpr
 | Subtraction of MathExpr * MathExpr
 | Literal of double

Venus.fs

Discriminated Union Example

These are some of the methods that sum exposes that can be used to construct a Ruby-based eval method
similar to the one we looked at in F#.

144

def r_math_eval(expr)
 if expr.get_IsAddition
 r_math_eval(expr.get_Item1) + r_math_eval(expr.get_Item2)
 elsif expr.get_IsSubtraction
 r_math_eval(expr.get_Item1) - r_math_eval(expr.get_Item2)
 else
 expr.get_Item
 end
end

Discriminated Union Example

let rec mathEval (m:MathExpr) =
 match m with
 | Addition(m1,m2) -> mathEval(m1) + mathEval(m2)
 | Subtraction(m1,m2) -> mathEval(m1) - mathEval(m2)
 | Literal(m1) -> m1

Hereʼs a side-by-side comparison of the F# version of the a MathExpr evaluator, mathEval, and an IronRuby
version, r_math_eval.

145

>>> one = Venus::DU::MathExpr.new_literal(1.0)
=> Venus.DU+MathExpr+Literal
>>> two = Venus::DU::MathExpr.new_literal(2.0)
=> Venus.DU+MathExpr+Literal
>>> sum = Venus::DU::MathExpr.new_addition(one, two)
=> Venus.DU+MathExpr+Addition
>>> def r_math_eval(expr)
... if expr.get_IsAddition
... r_math_eval(expr.get_Item1) + r_math_eval(expr.get_Item2)
... elsif expr.get_IsSubtraction
... r_math_eval(expr.get_Item1) - r_math_eval(expr.get_Item2)
... else
... expr.get_Item
... end
... end
=> nil
>>> r_math_eval(sum)
=> 3.0

Discriminated Union Example

Hereʼs the irb sequence that shows a sum being evaluated using r_math_eval.

146

class Array
 def to_fslist_of_floats
 L = Microsoft::FSharp::Collections::FSharpList[Float]
 result = L.get_Empty
 reverse.each { |x| result = L.cons(x, result) }
 result
 end
end

ages = [17.0, 1.92, 5.0].to_fslist_of_floats

let ages = 17.0 :: 1.92 :: 5.0 :: []

Creating the Same F# List from

Creating an List

Sometimes you can say something in one language that takes a paragraph to explain in another language.

An F# list is a non-modifiable data structure. The expression on the top half of the side looks like a simple list expression with two colons
(::) being used as delimiters in lieu of commas. Actually the two colons (::) constitute the cons operator, which is used to append a value to
the head of a list in F#.

Creating an F# list in IronRuby is an example of something that you can express succinctly in one one language, but that involves jumping
through some hoops in another. This slide is based on code IronRuby core team member Tomas Matousek kindly sent me when I was initially
having trouble figuring out how to work with an F# list in IronRuby.

The bottom part of this slide adds a method to Array that converts an Array of Floats to an F# list. As you can see, creating a
Microsoft::FSharp::Collections::FSharpList involves a lot more than passing a collection of values to a constructor.

Iʼll break it down step by step: We start with an empty list, by calling getEmpty on L, which is an FSharpList. Then we reverse the
Array, because we are going to construct the F# list using the cons method (the method invoked by the cons operator (::)), which appends
values to the head of a list. Then we need to loop through the values in the Array in reverse order, appending each to the head of the list to
create a list with the same contents as the Array in the same order.

147

Language-Neutral Approaches

For the most part Iʼve talked about polyglot programs in terms of phrase books that translate one specific
language into another. Before concluding Iʼd just like to touch on the concept of language-neutral approaches.

In terms of human languages, a language-neutral approach might involve using universal symbols. No matter
what languages you speak, the sign in this slide indicates that you should expect to see flying saucers in the
vicinity.

148

Language-Neutral Approaches

http://code.google.com/p/protobuf/w/list

Protocol Buffers

http://incubator.apache.org/thrift/
Apache Thrift

http://bert-rpc.org/

BERT & BERT-RPC

This slide lists 3 projects that embrace language-neutral approaches to language integration.

The first two, Protocol Buffers and Apache Thrift, rely on an interface definition language (IDL). You define an
interface for a service indicating the service name, the inputs the service expects and the outputs the service
returns using the IDL syntax. Code generators translate the IDL into routines that can be called by clients or
services to send or receive data in a variety of languages. Using the same IDL you can generate client code in
one language and service code in another.

Where Protocol Buffers and Apache Thrift define an IDL, BERT-RPC is build around a binary-level protocol. The
BERT-RPC home page lists serializers that can translate BERT binaries to and from Erlang, Ruby and Scala as
well as serializers that support other languages.

149

ACKNOWLEDGEMENTS
Thanks Very Much

Mario Camou
Killy Draw

Dave Fayram
Daniel Kwiecinski
Tomas Matousek
Daniel Spiewak
Brian Takita

Jonathan Tran
Chuck Vose

Ezra Zygmuntowicz

150

CREDITS
Blog Post Titles on Slide #6:
http://blogs.msdn.com/b/tess/archive/2009/04/03/developers-are-from-mars-ops-people-are-from-venus-or-it-looked-good-on-paper.aspx
http://m.zdnet.com/blog/collaboration/engineers-are-from-mars-marketers-are-from-venus/367
http://blog.datamation.com/blog/2005/10/cios-are-from-m.html

“First Steps to Scala” Quote on Slide #17:
http://www.artima.com/scalazine/articles/steps.html

Erlang Reference Manual Excerpt on Slide #30:
http://www.erlang.org/doc/man/erlang.html

Erlang Reference Manual Excerpt on Slide #32:
http://ftp.sunet.se/pub/lang/erlang/doc/man/erl_eval.html

151

RUBY IS
FROM MARS,

Functional Languages Are
from Venus

Integrating Ruby with Erlang, Scala & F#

ANDREA O. K. WRIGHT
Chariot Solutions

aok@chariotsolutions.com

The source for all of the examples can be found at: https://github.com/A-OK/RubyIsFromMars

152

