
RESTful Web Services

20-Jan-2011

Gordon Dickens
Chariot Solutions

gdickens@chariotsolutions.com

Who Am I?
  Instructor/Mentor at

chariotsolutions.com/education

  Active Tweeter for Open Source Tech Topics
twitter.com/gdickens

  Certified Instructor for

  DZone Most Valuable Blogger
dzone.com/page/mvbs – dzone.com/user/284679
Technophile Blog - technophile.gordondickens.com

2

  I am speaking about:

Spring Social

Spring Greenhouse

phillyemergingtech.com/2011

3

Web Services
  What are Web Services?

  SOA
  Remote messaging between systems

  SOAP != Web Services

  Web Services != SOAP

  SOAP !opposite of REST

  REST !opposite of SOAP

4

Who is using REST?

5

What is REST?
  REpresentational State Transfer

  term by Roy Fielding
  en.wikipedia.org/wiki/Representational_State_Transfer

  www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

  Architectural Style
  Design principle

  Not an API

  Not a standard

  Web Services over HTTP
  Client: Browser, Desktop, Mobile Device, etc.

  HTTP supported by most languages & platforms

6

Re – S – T
  Representational

  Client requests data AND representation from server
  HTML, PDF, JSON, XLS, etc.

  State
  URIs returned in hypermedia are in context of the current resource
  Available options for the client embedded within
  View state to edit state

  Transfer
  The server transfers hypermedia content to the client

  HATEOAS
  Cool resume building buzzword
  Hypermedia as the Engine of Application State

7

REST Benefits
  Representations can be any format

  JSON, XML, PDF, JPG, HTML, etc.
  Client requests standard media type

  Hypermedia
  response contains resource specific links
  provides state transitions

  Cacheable

  HTTP
  Existing Infrastructure
  Language Support

8

REST Introduction
  Take the ROAD back to OOAD

  Nouns are defined in the URI

  Verbs are provided by HTTP
  GET (retrieve)
  POST (create)
  PUT (update)
  DELETE (delete)

  What should the server return from this URI?
  http://myserver:8080/myapp/accounts/234

9

What’s our Job?
  We must design the URI patterns & flow

  Define URIs with Nouns

  Include identifiers as Path Variables
  GET /accounts/234

  GET /accounts/234/orders

  GET /accounts/234/orders/25

  Parameters provide hints to the server such as
pagination values or max rows, etc.

10

URI Design
  For each Resource (noun) define behavior

  Account:
  GET /accounts – returns list of accounts
  GET /accounts/{id} – returns account by id
  POST /accounts – inserts account data
  PUT /accounts/{id} – Updates account by id
  DELETE /accounts/{id} – Close account by id

  Account’s Orders
  GET /accounts/{id}/orders – List all orders for account
  GET /accounts/{id}/orders/{id} – List specific order
  POST /accounts/{id}/orders – Insert order for account
  PUT /accounts/{id}/orders/{id} – Update order
  DELETE /accounts/{id}/orders/{id} – Cancel Order

11

HTTP Response Codes
  Familiar HTTP Response codes

  200 OK
  404 Page not found
  500 Server is kaput

  RESTful uses standard HTTP codes
  1xx Informational
  2xx Success
  3xx Redirection
  4xx Client Error
  5xx Server Error

12

Designing the flow
  Conditional Headers

  If-Unmodified-Since
  If-Match (etag)

  If-None-Match

  Example of
Conditional PUT

  Returns:
  200 - OK

  201 - Created

  404 – Not Found

  412 – Precond. Failed
13

Representation Request
  Client to Server

14

GET /accounts/234
HOST: myserver.com
Accept: application.xml, …
…

GET /accounts/234
HOST: myserver.com
Accept: application/json, …
…

HTTP/1.1 200 OK
Date: …
Content-Length: 2146
<account id=“234”>
…
</account>

HTTP/1.1 200 OK
Date: …
Content-Length: 1027
{
“account”:{“id”:234, …}
}

Java & REST

  JAX-RS
  JSR-311
  Jersey (RI), Restlet, CXF, RestEasy

  Spring REST
  leverages formatters & converters

  REST Template – Easy Client development
  Spring Roo – generates RESTful URIs

15

Spring REST
  Annotations for:

  URL Path
  HTTP Verbs
  Request body (payload)
  Response body
  Header, Parameter & Path variables
  Response Status codes

  Automatic marshalling/unmarshalling of resource
representations

  <mvc:annotation-driven/>
  Registers automatic formatters, converters & marshallers
  Inspects classpath for Jackson/JSON, JodaTime, etc.

16

@RequestMapping
@ResponseStatus
@PathVariable
@RequestBody
@ResponseBody
@RequestParam
@RequestHeader

Security - Data
  Same as other messaging approaches

  Encapsulation:
  SSL, TLS, IPsec, etc.

  Encryption:
  PGP, S/MIME, etc.

17

Security - Auth
  Authentication:

  Basic, Digest, X509, etc.
  Spring Security

  Client Sends
GET /account/123

  Server Responds with:
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm=”MyApp Realm”

  Authorization
  Standard web.xml security configuration
  Spring Security
  OAuth

18

“An open protocol to allow secure API authorization in
a simple and standard method from desktop to web

applications.”

http://oauth.net

code.google.com/p/oauth/

19

OAuth Participants
  Client

  Our app

  Server
  Who we want to connecting with

  Service Provider
  Service that authenticates credentials

20

OAuth Safety Dance

21

openid.net/developers/libraries/#java

  OpenID 2.0 Java 5 impl
for Google Federated
Login

code.google.com/p/jopenid/

“OpenID is a decentralized authentication protocol that makes it
easy for people to sign up and access web accounts.”

openid.net

  Java REST framework,
openid 2.0, OAuth
consumer & service
provider, JSON IOC

code.google.com/p/dyuproject/

22

Questions?
  Instructor/Mentor at

chariotsolutions.com/education

  Active Tweeter for Open Source Tech Topics
twitter.com/gdickens

  Certified Instructor for

  DZone Most Valuable Blogger
dzone.com/page/mvbs – dzone.com/user/284679
Technophile Blog - technophile.gordondickens.com

23

