
RESTful Web Services

20-Jan-2011

Gordon Dickens
Chariot Solutions

gdickens@chariotsolutions.com

Who Am I?
  Instructor/Mentor at

chariotsolutions.com/education

  Active Tweeter for Open Source Tech Topics
twitter.com/gdickens

  Certified Instructor for

  DZone Most Valuable Blogger
dzone.com/page/mvbs – dzone.com/user/284679
Technophile Blog - technophile.gordondickens.com

2

  I am speaking about:

Spring Social

Spring Greenhouse

phillyemergingtech.com/2011

3

Web Services
  What are Web Services?

  SOA
  Remote messaging between systems

  SOAP != Web Services

  Web Services != SOAP

  SOAP !opposite of REST

  REST !opposite of SOAP

4

Who is using REST?

5

What is REST?
  REpresentational State Transfer

  term by Roy Fielding
  en.wikipedia.org/wiki/Representational_State_Transfer

  www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

  Architectural Style
  Design principle

  Not an API

  Not a standard

  Web Services over HTTP
  Client: Browser, Desktop, Mobile Device, etc.

  HTTP supported by most languages & platforms

6

Re – S – T
  Representational

  Client requests data AND representation from server
  HTML, PDF, JSON, XLS, etc.

  State
  URIs returned in hypermedia are in context of the current resource
  Available options for the client embedded within
  View state to edit state

  Transfer
  The server transfers hypermedia content to the client

  HATEOAS
  Cool resume building buzzword
  Hypermedia as the Engine of Application State

7

REST Benefits
  Representations can be any format

  JSON, XML, PDF, JPG, HTML, etc.
  Client requests standard media type

  Hypermedia
  response contains resource specific links
  provides state transitions

  Cacheable

  HTTP
  Existing Infrastructure
  Language Support

8

REST Introduction
  Take the ROAD back to OOAD

  Nouns are defined in the URI

  Verbs are provided by HTTP
  GET (retrieve)
  POST (create)
  PUT (update)
  DELETE (delete)

  What should the server return from this URI?
  http://myserver:8080/myapp/accounts/234

9

What’s our Job?
  We must design the URI patterns & flow

  Define URIs with Nouns

  Include identifiers as Path Variables
  GET /accounts/234

  GET /accounts/234/orders

  GET /accounts/234/orders/25

  Parameters provide hints to the server such as
pagination values or max rows, etc.

10

URI Design
  For each Resource (noun) define behavior

  Account:
  GET /accounts – returns list of accounts
  GET /accounts/{id} – returns account by id
  POST /accounts – inserts account data
  PUT /accounts/{id} – Updates account by id
  DELETE /accounts/{id} – Close account by id

  Account’s Orders
  GET /accounts/{id}/orders – List all orders for account
  GET /accounts/{id}/orders/{id} – List specific order
  POST /accounts/{id}/orders – Insert order for account
  PUT /accounts/{id}/orders/{id} – Update order
  DELETE /accounts/{id}/orders/{id} – Cancel Order

11

HTTP Response Codes
  Familiar HTTP Response codes

  200 OK
  404 Page not found
  500 Server is kaput

  RESTful uses standard HTTP codes
  1xx Informational
  2xx Success
  3xx Redirection
  4xx Client Error
  5xx Server Error

12

Designing the flow
  Conditional Headers

  If-Unmodified-Since
  If-Match (etag)

  If-None-Match

  Example of
Conditional PUT

  Returns:
  200 - OK

  201 - Created

  404 – Not Found

  412 – Precond. Failed
13

Representation Request
  Client to Server

14

GET /accounts/234
HOST: myserver.com
Accept: application.xml, …
…

GET /accounts/234
HOST: myserver.com
Accept: application/json, …
…

HTTP/1.1 200 OK
Date: …
Content-Length: 2146
<account id=“234”>
…
</account>

HTTP/1.1 200 OK
Date: …
Content-Length: 1027
{
“account”:{“id”:234, …}
}

Java & REST

  JAX-RS
  JSR-311
  Jersey (RI), Restlet, CXF, RestEasy

  Spring REST
  leverages formatters & converters

  REST Template – Easy Client development
  Spring Roo – generates RESTful URIs

15

Spring REST
  Annotations for:

  URL Path
  HTTP Verbs
  Request body (payload)
  Response body
  Header, Parameter & Path variables
  Response Status codes

  Automatic marshalling/unmarshalling of resource
representations

  <mvc:annotation-driven/>
  Registers automatic formatters, converters & marshallers
  Inspects classpath for Jackson/JSON, JodaTime, etc.

16

@RequestMapping
@ResponseStatus
@PathVariable
@RequestBody
@ResponseBody
@RequestParam
@RequestHeader

Security - Data
  Same as other messaging approaches

  Encapsulation:
  SSL, TLS, IPsec, etc.

  Encryption:
  PGP, S/MIME, etc.

17

Security - Auth
  Authentication:

  Basic, Digest, X509, etc.
  Spring Security

  Client Sends
GET /account/123

  Server Responds with:
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm=”MyApp Realm”

  Authorization
  Standard web.xml security configuration
  Spring Security
  OAuth

18

“An open protocol to allow secure API authorization in
a simple and standard method from desktop to web

applications.”

http://oauth.net

code.google.com/p/oauth/

19

OAuth Participants
  Client

  Our app

  Server
  Who we want to connecting with

  Service Provider
  Service that authenticates credentials

20

OAuth Safety Dance

21

openid.net/developers/libraries/#java

  OpenID 2.0 Java 5 impl
for Google Federated
Login

code.google.com/p/jopenid/

“OpenID is a decentralized authentication protocol that makes it
easy for people to sign up and access web accounts.”

openid.net

  Java REST framework,
openid 2.0, OAuth
consumer & service
provider, JSON IOC

code.google.com/p/dyuproject/

22

Questions?
  Instructor/Mentor at

chariotsolutions.com/education

  Active Tweeter for Open Source Tech Topics
twitter.com/gdickens

  Certified Instructor for

  DZone Most Valuable Blogger
dzone.com/page/mvbs – dzone.com/user/284679
Technophile Blog - technophile.gordondickens.com

23

