Uncovering the Unknown

Principles of Type Inference

Agenda

® Philosophy of Types

® “Local” Type Inference
® Scala

® “Global” Type Inference
e SML

® Haskell

Philosophy of Types

® Type system = Proof system
® | ots of little proofs about your program
® VWe can’t detect every problem...
® ...but we can detect some!
® Not intended to make life difficult

® (that happens by accident)

I'Hr:T

, . PROGRESS
t =1t V t1s value

CHe:T t =1
CHY T

PRESERVATION

Translation

Progress

* |f a term is well-typed

* Then it evaluates
* Oritis already a value

Preservation

* |f a term is well-typed
e And it evaluates

e Then the result has
the same type

Example

name().length

4
’

name().length

1
1
1
1
1
1
1
1
1
1
1
1
1
4
’

Evaluates

v

"Daniel". length

name().length

1
1
1
1
1
1
1
1
1
1
1
1
1
4
’

Evaluates

v

"Daniel". length

This is Type Theory!

Where do Types Come From!

Inference

® Type “inference” is a misnomer
® (should be “reconstruction™)
® [wo possible approaches:
® Each reconstruction is self-contained

® |arge “chunks” are considered holistically

Inference

® Type “inference” is a misnomer

® (should be “reconstruction”)

one

® FEach reconstruction is self-contained

® |arge “chunks” are considered holistically

“Local” Inference

® Confine your focus to a single declaration
® “Chunk” size is one statement
® Compute the type directly

® Move on to the next one...

def foo() = {
val name = "Daniel"”

val len = name. length
println(len)

}

() = A
val name = "Daniel"
Llen = name. length
println(len)

h

val name = "Daniel": String

val len = name. length

val len = name. length : (nt

def foo() = {

println(len)
}

def foo() = {

println(len) : Lunit

}

def Tool) =+

println(len) : Lunit
}

val nums = List(1, 2, 3, 4, 5)

val strs = nums map {1 i => i.toString }

val nums = List(1, 2, 3, 4, 5)

v

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

val strs = nums map { i => i.toString }

val strs = nums map { i => i.toString }

e

val strs = nums map { i => i.toString }

e

vt = St no

val strs = nums map { i => i.toString }

o -

C UstIstringl : nt = String

Pros

® Mostly intuitive behavior

Pros

® Mostly intuitive behavior
® Very simple to implement

® (the compiler does this work anyway)

Pros

® Mostly intuitive behavior
® Very simple to implement
® (the compiler does this work anyway)

® Always O(1) and always decidable

Pros

® Mostly intuitive behavior
® Very simple to implement

® (the compiler does this work anyway)
® Always O(1) and always decidable

® Quite beneficial in practice

Languages

Languages

def add5(x) = x + 5

o

v

def add5(x) =

def fac(x: Int) = {
if (x <= 1)
1

else
X % fac(x - 1)

def fac(x: Int) = {
if (x <= 1)
1

else
X x fac(x — 1)

def fac(x: Int) = {
if (x <= 1)
1 : lnt

else
X x fac(x — 1)

x x fac(x — 1)

x % fac(x - 1

x * fac(x - 1)

® Doesn’t look at the whole program
® Simultaneously examines a large chunk
® Usually a Llet binding (Hindley-Milner)

® Can be much smarter

® A generalization of local inference

def fac(x: Int) = {
if (x <= 1)
1

else
X % fac(x - 1)

fun fac (x: int) =
if X <= 1 then
1

else
X % fac (x — 1)

fun fac (x: int) =
if X <= 1 then
1

else
X % fac (x — 1)

//:LV\,’C%H
J

fun fac (x: int) =
if X <= 1 then
1

else
X % fac (x — 1)

fun fac (x:
i1f X <= 1 then
1

else
X *x fac (x = 1)

o={arint}

// . Lt — Lt
J

fun fac (x: int) =
if X <= 1 then

1
else
X % fac (x — 1)

fun fac (x: int) =
if X <= 1 then
1

else
X % fac (x — 1)

fun fac x =
if X <= 1 then
1

else
X % fac (x — 1)

fun fac x =
if X <= 1 then
1

else
X % fac (x — 1)

:a — b
4

fun fac x =
if X <= 1 then
1

else
X % fac (x — 1)

O={a~uwnt b~ Lnt}

/,- . LAt — Lt
J

fun fac x =
if x <= 1 then

1
else
X % fac (x — 1)

fun grow f x = (f Xx)

fun grow f x = (f Xx)

fun grow f x = (f Xx)

[

)
X
(f

X =

row T

J

n

fu

o a — b — C

/ J<}4b

fun grgw f x = (f x)

A

e
l /f b

: grgw f x = (f X)

Ny

O={a~» (b—d)}

o L

/o

fun grow f x = Fx) it x

o= 1{a~(b—=4d)}

o a — b — C

J<}ab

v oY
fun grow f X =

~:0 X d list = d List

6=1{ar (b—d), % (dlist)}

. a
J<}ab

VAN
fun grow f X =

~:d X dlist = d list

6=1{ar (b—d), % (dlist)}

6=1{ar (b—d), % (dlist)}

J

6= {ar (dlist—d), 2 (dlist))

- (d list = d) — d list = d List

fun Srow f x = (f x) 11 X

def grow[D](f: List[D] => D)(x: List[D]): List[D] =

f(x) 11 X

Constraint Typing

o~

S, N

e Hindley-Milner is a type system! \.

® Damas-Milner is the algorithm

Constraint Typing

o~

D N

e Hindley-Milner is a type system! \.
® Damas-Milner is the algorithm

® Damas-Milner gives us structure, not hame

Constraint Typing

® Hindley-Milner is a type system!

® Damas-Milner is the algorithm
® Damas-Milner gives us structure, not name
® |nherently structural, not nominal

® _..and that’s why Scala doesn’t have it

public interface Foo {
public int length();
}

public interface Bar {
public int length();

}

// really?

Structural Typing

® Compare types by what they are

® (not by what they’re called)

Structural Typing

® Compare types by what they are
® (not by what they’re called)

® This is exactly what “duck typing” means

Structural Typing

® Compare types by what they are
® (not by what they’re called)
® This is exactly what “duck typing” means

® Really verbose error messages

Structural Typing

® Compare types by what they are

® (not by what they’re called)
® This is exactly what “duck typing” means
® Really verbose error messages

® Not Java Compatible

Statically typed
languages of the future
will use structural, rather

than nominal, type

systems.

Conclusion

® TJype systems don’t have to be horrible

® (a.k.a. don’t assume everything is |ava)
® No excuse to not have at least local inference
® |nference can have a profound effect

® Nominal typing makes life...difficult

Conclusion

e Type systems don’t have to be horrible
® (a.k.a. don’t assume everything is |ava)

® No excuse to not have at least local inference

® |nference can have a profound effect

® Nominal typing makes life...difficult

