
Uncovering the Unknown
Principles of Type Inference



Agenda

• Philosophy of Types

• “Local” Type Inference

• Scala

• “Global” Type Inference

• SML

• Haskell



Philosophy of Types

• Type system = Proof system

• Lots of little proofs about your program

• We can’t detect every problem…

• …but we can detect some!

• Not intended to make life difficult

• (that happens by accident)
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Translation

Progress

• If a term is well-typed

• Then it evaluates
• Or it is already a value

Preservation

• If a term is well-typed
• And it evaluates

• Then the result has 
the same type
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This is Type Theory!



Where do Types Come From?
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Q:  Why do languages make typing so explicit?

A: Laziness!
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• Two possible approaches:

• Each reconstruction is self-contained

• Large “chunks” are considered holistically

One approach



“Local” Inference

• Confine your focus to a single declaration

• “Chunk” size is one statement

• Compute the type directly

• Move on to the next one…
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Pros

• Mostly intuitive behavior

• Very simple to implement

• (the compiler does this work anyway)

• Always         and always decidable

• Quite beneficial in practice

O(1)



Languages



Languages



def add5(x) = x + 5



def add5(x) = x + 5

: ????
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def fac(x: Int) = {
  if (x <= 1)
    1
  else
    x * fac(x - 1)
}

1 : Int

x * fac(x - 1) ????: 



“Global” Inference

• Doesn’t look at the whole program

• Simultaneously examines a large chunk

• Usually a let binding (Hindley-Milner)

• Can be much smarter

• A generalization of local inference
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: int " int

fun fac x =
  if x <= 1 then
    1
  else
    x * fac (x - 1)
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def grow[D](f: List[D] => D)(x: List[D]): List[D] =
  f(x) :: x
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Constraint Typing

• Hindley-Milner is a type system!

• Damas-Milner is the algorithm

• Damas-Milner gives us structure, not name

• Inherently structural, not nominal

• …and that’s why Scala doesn’t have it



public interface Foo {
    public int length();    
}

public interface Bar {
    public int length();
}

Foo f = …;
Bar b = f;       // really?
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Structural Typing

• Compare types by what they are

• (not by what they’re called)

• This is exactly what “duck typing” means

• Really verbose error messages

• Not Java Compatible



Statically typed 
languages of the future 
will use structural, rather 

than nominal, type 
systems.
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• Nominal typing makes life…difficult



Conclusion

• Type systems don’t have to be horrible

• (a.k.a. don’t assume everything is Java)

• No excuse to not have at least local inference

• Inference can have a profound effect

• Nominal typing makes life…difficult

• Type systems don’t have to be horrible



Questions?


