
Uncovering the Unknown
Principles of Type Inference

Agenda

• Philosophy of Types

• “Local” Type Inference

• Scala

• “Global” Type Inference

• SML

• Haskell

Philosophy of Types

• Type system = Proof system

• Lots of little proofs about your program

• We can’t detect every problem…

• …but we can detect some!

• Not intended to make life difficult

• (that happens by accident)

Γ � t : T
t ⇒ t � ∨ t is value

PROGRESS

Γ � t : T t ⇒ t �

Γ � t � : T
PRESERVATION

1

Translation

Progress

• If a term is well-typed

• Then it evaluates
• Or it is already a value

Preservation

• If a term is well-typed
• And it evaluates

• Then the result has
the same type

Example

name().length

Example

name().length
Has type: Int

Is value? false

Example

name().length

"Daniel".length

Evaluates

Has type: Int

Is value? false

Has type: Int

Is value? false

Example

name().length

"Daniel".length

Evaluates

Has type: Int

Is value? false

Has type: Int

Is value? false

Evaluates

This is Type Theory!

Where do Types Come From?

Q: Why do languages make typing so explicit?

Q: Why do languages make typing so explicit?

A: Laziness!

Inference

• Type “inference” is a misnomer

• (should be “reconstruction”)

• Two possible approaches:

• Each reconstruction is self-contained

• Large “chunks” are considered holistically

Inference

• Type “inference” is a misnomer

• (should be “reconstruction”)

• Two possible approaches:

• Each reconstruction is self-contained

• Large “chunks” are considered holistically

One approach

“Local” Inference

• Confine your focus to a single declaration

• “Chunk” size is one statement

• Compute the type directly

• Move on to the next one…

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

val name = "Daniel"

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: Stringval name = "Daniel"

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: String
 val len = name.length

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: String
: Int val len = name.length

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: String
: Int

def foo() = {

 println(len)
}

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: String
: Int

: Unit

def foo() = {

 println(len)
}

def foo() = {
 val name = "Daniel"
 val len = name.length
 println(len)
}

: String
: Int

: Unit

: () ! Unit

def foo() = {

 println(len)
}

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

: List[Int]

val nums = List(1, 2, 3, 4, 5)

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

: List[Int]

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

: List[Int]

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }
: Int

: List[Int]

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

: Int ! String

: Int

: List[Int]

val strs = nums map { i => i.toString }

val nums = List(1, 2, 3, 4, 5)

val strs = nums map { i => i.toString }

: Int ! String

: Int

: List[String]

: List[Int]

val strs = nums map { i => i.toString }

Pros

• Mostly intuitive behavior

Pros

• Mostly intuitive behavior

• Very simple to implement

• (the compiler does this work anyway)

Pros

• Mostly intuitive behavior

• Very simple to implement

• (the compiler does this work anyway)

• Always and always decidableO(1)

Pros

• Mostly intuitive behavior

• Very simple to implement

• (the compiler does this work anyway)

• Always and always decidable

• Quite beneficial in practice

O(1)

Languages

Languages

def add5(x) = x + 5

def add5(x) = x + 5

: ????

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

1

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

1 : Int

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

1 : Int

x * fac(x - 1)

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

1 : Int

x * fac(x - 1)

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

1 : Int

x * fac(x - 1) ????:

“Global” Inference

• Doesn’t look at the whole program

• Simultaneously examines a large chunk

• Usually a let binding (Hindley-Milner)

• Can be much smarter

• A generalization of local inference

def fac(x: Int) = {
 if (x <= 1)
 1
 else
 x * fac(x - 1)
}

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

}! = {

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int " a

}! = {

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

1

: int " a

}! = {

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

1 : int

: int " a

}! = {

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int

x * fac (x - 1)

: int " a

}! = {

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int

x * fac (x - 1)

: int " a

}! = {

: int

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int

x * fac (x - 1)

: int " a

}! = {

: int : a

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int

x * fac (x - 1)

: int " a

}! = {

: int

: int × int " int

: a

a int

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: int

x * fac (x - 1)

: int " a

}! = {

: int

: int × int " int

: a

: int " int

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

fun fac (x: int) =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

}! = {

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

: a " b

}! = {

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)x * fac (x - 1)

: a " b

}! = {

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)x * fac (x - 1)

: a " b

}! = {

: a

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)x * fac (x - 1)

: a " b

}! = {

: a : b

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)x * fac (x - 1)

: a " b

}! = {

: a

: int × int " int

: b

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)x * fac (x - 1)

a int, b int

: a " b

}! = {

: a

: int × int " int

: b

: int " int

fun fac x =
 if x <= 1 then
 1
 else
 x * fac (x - 1)

fun grow f x = (f x) :: x

fun grow f x = (f x) :: x

}! = {

fun grow f x = (f x) :: x

: a

}! = {

fun grow f x = (f x) :: x

: a
: b

}! = {

fun grow f x = (f x) :: x

: a
: b

}! = {
: a " b " c

fun grow f x = (f x) :: x

: a
: b

}! = {
: a " b " c

: d

a (b " d)

fun grow f x = (f x) :: x

: a
: b

}! = {
: a " b " c

: d

a (b " d)

fun grow f x = (f x) :: x

: a
: b

}! = {
: a " b " c

: d

: d × d list " d list

a (b " d)

fun grow f x = (f x) :: x

: a
: b

}! = {
: a " b " c

: d

: d × d list " d list

, (d list)c
b

a (b " d)

fun grow f x = (f x) :: x

: a
: b

! = {

: a " b " c

}, (d list)c
b

a (b " d)

fun grow f x = (f x) :: x

: a
: b

! = {

: a " b " c

}, (d list)c
b

fun grow f x = (f x) :: x

: a
: b

! = {

: a " b " c

" d)a (d list }, (d list)c
b

fun grow f x = (f x) :: x

: (d list " d) " d list " d list

def grow[D](f: List[D] => D)(x: List[D]): List[D] =
 f(x) :: x

Constraint Typing

• Hindley-Milner is a type system!

• Damas-Milner is the algorithm

Constraint Typing

• Hindley-Milner is a type system!

• Damas-Milner is the algorithm

• Damas-Milner gives us structure, not name

Constraint Typing

• Hindley-Milner is a type system!

• Damas-Milner is the algorithm

• Damas-Milner gives us structure, not name

• Inherently structural, not nominal

• …and that’s why Scala doesn’t have it

public interface Foo {
 public int length();
}

public interface Bar {
 public int length();
}

Foo f = …;
Bar b = f; // really?

Structural Typing

• Compare types by what they are

• (not by what they’re called)

Structural Typing

• Compare types by what they are

• (not by what they’re called)

• This is exactly what “duck typing” means

Structural Typing

• Compare types by what they are

• (not by what they’re called)

• This is exactly what “duck typing” means

• Really verbose error messages

Structural Typing

• Compare types by what they are

• (not by what they’re called)

• This is exactly what “duck typing” means

• Really verbose error messages

• Not Java Compatible

Statically typed
languages of the future
will use structural, rather

than nominal, type
systems.

Conclusion

• Type systems don’t have to be horrible

• (a.k.a. don’t assume everything is Java)

• No excuse to not have at least local inference

• Inference can have a profound effect

• Nominal typing makes life…difficult

Conclusion

• Type systems don’t have to be horrible

• (a.k.a. don’t assume everything is Java)

• No excuse to not have at least local inference

• Inference can have a profound effect

• Nominal typing makes life…difficult

• Type systems don’t have to be horrible

Questions?

