Doing the Mundane
a Million Times a

Minute
Mark Chadwick







Balancing =

You Have Servers
You Have Requests

Requests Need To Get To
SEIVEIE

(Quickly...)




Balancing =




Balancing =

Fault Tolerance
Distributed Request Balancing

Global Load Distribution




(5




Balancing =




Balancing =

Apache

(mod_proxy)
Nginx

(proxy_pass)




Balancing =

Fewer DNS Entries
Faster Configuration Changes

Backend Isolation




(5




Balancing =

http://haproxy.1wt.eu
Fast as all get-out
Highly Configurable

Handles Hugely Concurrent
Loads

splice()




Balancing =

net.ipv4.tcp_max_syn backlog
net.ipv4.tcp_max_tw_buckets
net.ipv4.tcp netdev_max_ backlo

net.ipv4.tcp _tw _recycle

~50k reg/sec







Error Detection =




Error Detection =

Machines Fail
Code Fails

Infrastructure Fails

(You need to know about
it)




Error Detection =

Log to Disk

SSH ain't broken




Error Detection =

Log to Disk

SSH ain't broken

Untenable after a just a
handful of hosts




Error Detection =

Log to a centralized host

Now all the logs are together




Error Detection =

Log to a centralized host

Now all the logs are together

Log Host gets
overwhelmed with
hundreds of machines




Error Detection =

Log to a distributed set of hosts

Files spread across a distributed
file system




Error Detection =

Log to a distributed set of hosts

Files spread across a distributed
file system

Finally Works!




Error Detection =

Log to a distributed set of hosts

Files spread across a distributed
file system

Finally Works!

Way too much information




Error Detection =

Screw Logging (j/k...sorta)

Just Count Stuff




Error Detection =

Graphite

http://graphite.wikidot.com







Error Detection =

Zenoss

http://zenoss.com/




Error Detection =

Zenoss
http://zenoss.com/

Can get pret-ty toasty with
hundreds of machines




Scale Vertically!
Good Enough!




Moving Data =




Moving Data =

Your application emits records

Something needs to consume
them

You need to store them
somewhere




Moving Data =

Your transaction records are
published...

Subscribers want to process them

PubSub!




(5




Moving Data =

If the middleman is getting killed...

And we know who's going to
process the data anyway...

RPC!




(5




Moving Data =

Network calls per-message will
fail

So we need to spool somewhere

Disk!




A Brief Interlude =
Estimating

10,000 req/s
1k logging / req
~ 10MB/s

~ 0.8TB/day




A Brief Interlude =
Estimating

DC Bandwidth

Disk bandwidth




A Brief Interlude =
Estimating

When your traffic is constant,
storage increases linearly

When your traffic increases
linearly...




Moving Data =

Compression
Yes

Please







Deploying




Deploying

Deploying to 100°s of machines

Canary’ing code

Cascading failures during
upgrades

Cross-version interactions

Global Deployments




Deploying =

If each machine needs code...

Update code on each machine!
Restart.

Doesn't scale past a few
nodes




Deploying =

If we automate how the code is
deployed...

Write scripts to push code from a
single host!

Deployments take hours

Inconsistent/Dead
Machines




Deploying =

We'll use a deployment system!

Chef, CFEngine, Puppet, et all.

Deploy machines melt




Deploying =

Distribute Chef Components




Deploying =

Distribute Chef Components
CouchDB

RabbitMQ

Solr Indexer

Web Ul







Summary =

It's easy to outgrow components
of your stack

Component failures may be quite
subtle

lterative improvements are often
test best you can do




Questions?







