
Above the Clouds:
Introducing Akka

Jonas Bonér - Scalable Solutions
Garrick Evans - Autodesk

Tuesday, May 3, 2011

The problem

It is way too hard to build:
1. correct highly concurrent systems

2. truly scalable systems

3. fault-tolerant systems that self-heals

...using “state-of-the-art” tools

Tuesday, May 3, 2011

akkaIntroducing

Tuesday, May 3, 2011

Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Tuesday, May 3, 2011

Vision

...with a single unified

Programming model

Runtime service

Tuesday, May 3, 2011

Manage system overload

Tuesday, May 3, 2011

Scale up & Scale out

Tuesday, May 3, 2011

Replicate and distribute
for fault-tolerance

Tuesday, May 3, 2011

Transparent load balancing
Tuesday, May 3, 2011

CORE
SERVICES

ARCHITECTURE

Tuesday, May 3, 2011

ADD-ON
MODULES

ARCHITECTURE

Tuesday, May 3, 2011

ARCHITECTURE

CLOUDY
AKKA

Tuesday, May 3, 2011

FINANCE

• Stock trend Analysis & Simulation

• Event-driven messaging systems

BETTING & GAMING

• Massive multiplayer online gaming

• High throughput and transactional
betting

TELECOM

• Streaming media network gateways

SIMULATION

• 3D simulation engines

E-COMMERCE

• Social media community sites

SOME EXAMPLES:

WHERE IS AKKA USED?

Tuesday, May 3, 2011

What is an Actor?

Tuesday, May 3, 2011

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Behavior

State

Actor

Tuesday, May 3, 2011

Event-driven
Thread

Behavior

State

Actor

Tuesday, May 3, 2011

Akka Actors
one tool in the toolbox

Tuesday, May 3, 2011

!"#$%&'($!)!"#$%

!*"##!&'()*+,!$+)$,-#!-$*',!.
!!."/!$'()*+,!/!0

!!-$0!,+$+#1+!/!.
!!!!!"#$!"#$%!/2!
!!!!!!$'()*+,!3/!4

!!!!!!5,#)*6)7$'()*+,8

!!9

9

Actors

Tuesday, May 3, 2011

."*!$'()*+,!/!:$*',;<=&'()*+,>

Create Actors

$'()*+, is an -$*',?+<

Tuesday, May 3, 2011

."*!$'()*+,!/!:$*',;<=&'()*+,>@A*:,*

Start actors

Tuesday, May 3, 2011

."*!$'()*+,!/!:$*',;<=&'()*+,>@A*:,*
$'()*+,@A*'5

Stop actors

Tuesday, May 3, 2011

$'()*+,!B!"#$%!

Send: !

fire-forget

Tuesday, May 3, 2011

CC!,+*(,)A!:!<(*(,+

."*!<(*(,+!/!:$*',!BBB!D+AA:E+
<(*(,+@:F:#*

."*!,+A(6*!/!<(*(,+@,+A(6*

Send: !!!

returns the Future directly

Tuesday, May 3, 2011

Future
!"#!"#$#%&'(!"#$#%&)(!"#$#%&*!+!
!!$%&!,&"-#.$/012.&$-3.&4#$#%&5'6667

"#$#%&'8-9-:$
"#$#%&)80;/012.&$&5"!+<!8887

"#$#%&'8=012.&$&>:$?@&A#.$58887!
"#$#%&)8=012.&$&>:$?BC=&2$:0;58887
"#$#%&*8=012.&$&>:$?5"#$#%&)7

Tuesday, May 3, 2011

Future
CC!G6'$%#)E

H(*(,+A@:F:#*;)+7<(*(,+A8

H(*(,+A@:F:#*-667<(*(,+A8

DD!E0;F3.0=G:;H
I-.!"!+!4#$#%&A8":%A$/012.&$&JK"5"#$#%&A7
I-.!"!+!4#$#%&A8%&J#=&5"#$#%&A755C(!L7!+<!887
I-.!"!+!4#$#%&A8"0.J5M&%075"#$#%&A755C(!L7!+<!887

Tuesday, May 3, 2011

."*!,+A(6*!/!7:$*',!BB!D+AA:E+8@:A=I*,#)E>

Send: !!

uses Future under the hood and blocks until
timeout or completion

Tuesday, May 3, 2011

!*"##!I'J+-$*',!$+)$,-#!-$*',!.
!!-$0!,+$+#1+!/!.
!!!!!"#$!KA+,7):J+8!/2!
!!!!!!CC!(A+!,+56L

!!!!!!A+6<@,+56L7MN#!O!3!):J+8

!!9

9

Reply

Tuesday, May 3, 2011

HotSwap

A+6<!P+$'J+!.

!!CC!)+F!P'QL

!!!"#$!R+FD+AA:E+!/2!
!!!!@@@!!

9

Tuesday, May 3, 2011

HotSwap

:$*',!B!N'*IF:5!.

!!CC!)+F!P'QL

!!!"#$!R+FD+AA:E+!/2!
!!!!@@@!!

9

Tuesday, May 3, 2011

HotSwap

A+6<@()P+$'J+7)

Tuesday, May 3, 2011

!*"##!DL-$*',!$+)$,-#!-$*',!.
!!A+6<@Q#A5:*$S+,!/!T#A5:*$S+,A
!!!!@)+F"S,+:QG:A+QT#A5:*$S+,7A+6<8
!!
!!@@@
9

:$*',@Q#A5:*$S+,!/!Q#A5:*$S+,!CC!P+<',+!A*:,*+Q

Set dispatcher

Tuesday, May 3, 2011

Remote Actors

Tuesday, May 3, 2011

Remote Actors
Client-managed
Server-managed

Problem
 Deployment (local vs remote) is a dev decision

 We get a fixed and hard-coded topology
 Can’t change it dynamically and adaptively

Needs to be a
deployment & runtime decision

Remoting in Akka 1.0

Tuesday, May 3, 2011

Clustered Actors
(in development for upcoming Akka 2.0)

Tuesday, May 3, 2011

I-.!-=$0%!+!-=$0%K"NOLP=$0%Q5R1LFA&%I:=&S7

Address

Bind the actor to a virtual address

Tuesday, May 3, 2011

• Actor address is virtual and decoupled from how
it is deployed

• If no deployment configuration exists then actor
is deployed as local

• The same system can be configured as distributed
without code change (even change at runtime)

• Write as local but deploy as distributed in the
cloud without code change

• Allows runtime to dynamically and adaptively
change topology

Deployment

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address Type of
load-balancing

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address Type of
load-balancing

Clustered
or Local

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address Type of
load-balancing

Clustered
or Local Home address

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address Type of
load-balancing

Clustered
or Local Home address

Nr of replicas
in cluster

Tuesday, May 3, 2011

!""!#$
##!%&'(#$
####)*+,'-.*/&#$
######.-01*(23%*#$#################
########('4&*(#5#6,*!1&0%+46
########%,41&*(*)#$
##########7'.*#5#86)!("1&!(9,!/6:#;<<;=
##########(*+,3%!1#5#>
##########1&!&*,*11#5#'/
########?
######?
####?
##?
?

Deployment configuration

 Address Type of
load-balancing

Clustered
or Local Home address

Nr of replicas
in cluster

Stateful or
Stateless

Tuesday, May 3, 2011

• Subscription-based cluster membership service
• Highly available cluster registry for actors
• Highly available centralized configuration service
• Automatic replication with automatic fail-over

upon node crash
• Transparent and user-configurable load-balancing
• Transparent adaptive cluster rebalancing
• Leader election
• Compute grid facilities
• Event Sourcing

The runtime provides

Tuesday, May 3, 2011

Let it crash
fault-tolerance

Tuesday, May 3, 2011

The

Erlang
model

Tuesday, May 3, 2011

9 nines

Tuesday, May 3, 2011

...let’s take a
standard OO
application

Tuesday, May 3, 2011

Tuesday, May 3, 2011

Which components have
critically important state

and
explicit error handling?

Tuesday, May 3, 2011

Tuesday, May 3, 2011

 Classification of State
• Scratch data
• Static data
• Supplied at boot time
• Supplied by other components

• Dynamic data
• Data possible to recompute
• Input from other sources; data

 that is impossible to recompute
Tuesday, May 3, 2011

 Classification of State
• Scratch data
• Static data
• Supplied at boot time
• Supplied by other components

• Dynamic data
• Data possible to recompute
• Input from other sources; data

 that is impossible to recompute
Tuesday, May 3, 2011

 Classification of State
• Scratch data
• Static data
• Supplied at boot time
• Supplied by other components

• Dynamic data
• Data possible to recompute
• Input from other sources; data

 that is impossible to recompute

Must be
protected

by any means

Tuesday, May 3, 2011

Fault-tolerant
onion-layered
Error Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Error
Kernel

Tuesday, May 3, 2011

Tuesday, May 3, 2011

Tuesday, May 3, 2011

Node 1 Node 2

Tuesday, May 3, 2011

AMQP
Dataflow

Security

...and much much more

HTTP

Guice

scalaz

JTA

FSMSTM

Spring

Camel

OSGi

Microkernel

Tuesday, May 3, 2011

Project Hydrogen:
Building a distributed compute platform for design

engineering with Akka

Garrick Evans
Autodesk, Inc

Tuesday, May 3, 2011

The Big Picture

Products & Services

Data
Caching
Affinity
Results

Channels
Partitioning (Functional, QoS)
Scheduling
Routing
Security

Coordination
Fitness
Provisioning
Fault Tolerance
Load Balancing

Events
Log
Semantics
Scrutinize
Process

Audit
Operations
Analytics
Profiles

Meter
Quotas
Capacity

Hybrid Environment
Managed/Virtual
Public/Private

Customers
Customizable Offerings
Powerful On-Demand Technology
Flexibility in Access

Business
Offering
Tiering
Pricing

requirements

Tuesday, May 3, 2011

Some examples

• Clustered Physically-Correct Rendering
• Manufactured Part Design Optimization and Digital Simulation
• 3D Model Reconstruction from Photo Scenes

Visit //Autodesk Labs for more information and trials of
Project Neon

Project Centaur
Project Photofly

Tuesday, May 3, 2011

A Smaller Picture

Autodesk Software Engineer

design

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

design

REST REST

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration
Create App & Channels
Define Selector Rules

Define Provisioning Rules

•Read More
•Write Less
•Change Notifications

design

REST REST

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination Heartbeat
Update Scripts

•Amazon CloudWatch
•Custom Provisioning Triggers

design

REST REST

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute
Register
Subscribe
Update

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

design

REST REST

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

Work
Submit
Query
Cancel

•Dependency Graphs
•Scheduling & Flow

design

REST REST

Tuesday, May 3, 2011

A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

Work

•Dependency Graphs
•Scheduling & Flow

design

REST REST

Tuesday, May 3, 2011

1.0akka
Transactors

Persistence

MongoStorage AMQP

Actors akka Actorsμkernel

 Saturation Simple Things

μkernel

mist
0.6 1.0

sjson sjson

Atmosphere

Jersey

implementation

Tuesday, May 3, 2011

So how does Akka help?

• Actors make it easy to reason about concurrency
• Supervisors make it easy to compose fault-tolerant services
• Both it make easy to distribute functionality at the right scope

• The code, the team and the community are rock solid
• Zero production issues with the core offering

• Native Scala API to leverage power of the language

• 2 Examples...

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End
(Worker Apps)

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End
(Worker Apps)

Production Back End
(Worker Control)

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End
(Worker Apps)

Production Back End
(Worker Control)

Production Admin
(App Config)

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

‘master’ worker instance

core affinity
 moderate-long execution times
 little sustained system pressure

local & cluster data ops
 access additional services

 cross-worker communications

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

akka

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

akka

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

Channel Coordinator
• Run Script
• Run Program

akka

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

Channel Coordinator
• Run Script
• Run Program

AWS SDK
• Run/Terminate
• Start/Stop

akka

Tuesday, May 3, 2011

Custom Provisioning
(scala)(akka)_

Tuesday, May 3, 2011

So what is this Mist anyway?

me: “i'm actually rolling atmo out, i don't really need comet, i just need to delay responding. jonas offered the insight that
explicitly creating a completable future and passing that around instead of the broadcaster would accomplish the same. !so far it
works beautifully. i've got one more service to replace and then take it for a spin. !re: atmo, i just don't have the cycles any longer
to try to bend it to my will.“

viktor: “Ah, nice, however, that means that you're hogging a thread while waiting for the completion? ... yeah, I have spent too
much time trying to bend it to my will as well, will consider dropping it in favor of either Jetty Cont/WebSockets or Netty
WebSockets...”

me: “That is true and I am seeing some time outs under stress testing. Still, I'd rather have a well understood set of blocking i/o
threads to worry about than a seemingly unbounded set hosing my jvm. ”

viktor: “I absolutely agree”

Sept 2010

viktor: “... so how’s it going with Atmo?”

Tuesday, May 3, 2011

So what is this Mist anyway?

me: “i'm actually rolling atmo out, i don't really need comet, i just need to delay responding. jonas offered the insight that
explicitly creating a completable future and passing that around instead of the broadcaster would accomplish the same. !so far it
works beautifully. i've got one more service to replace and then take it for a spin. !re: atmo, i just don't have the cycles any longer
to try to bend it to my will.“

viktor: “Ah, nice, however, that means that you're hogging a thread while waiting for the completion? ... yeah, I have spent too
much time trying to bend it to my will as well, will consider dropping it in favor of either Jetty Cont/WebSockets or Netty
WebSockets...”

me: “That is true and I am seeing some time outs under stress testing. Still, I'd rather have a well understood set of blocking i/o
threads to worry about than a seemingly unbounded set hosing my jvm. ”

viktor: “I absolutely agree”

Sept 2010

viktor: “... so how’s it going with Atmo?”

Tuesday, May 3, 2011

Mist

Tuesday, May 3, 2011

Mist

POJO
@GET

Logic Logic Logic!!! !! !!
Akka

Global
Dispatcher ?

Tuesday, May 3, 2011

Mist

POJO
@GET

Logic Logic Logic!!! !! !!
Akka

Global
Dispatcher ?

Tuesday, May 3, 2011

Mist

Tuesday, May 3, 2011

Mist

POJO
@GET

@Broadcast
Logic Logic Logic! ! !

Akka
Global

Dispatcher
?

Tuesday, May 3, 2011

Mist

POJO
@GET

@Broadcast
Logic Logic Logic! ! !

Akka
Global

Dispatcher
?

Tuesday, May 3, 2011

Mist

POJO
@GET

@Broadcast
Logic Logic Logic! ! !

Akka
Global

Dispatcher
?

too
much
shared
state

Tuesday, May 3, 2011

Mist

POJO
@GET

@Broadcast
Logic Logic Logic! ! !

Akka
Global

Dispatcher

but...

threads

?

too
much
shared
state

Tuesday, May 3, 2011

Mist

POJO
@GET

@Broadcast
Logic Logic Logic! ! !

Akka
Global

Dispatcher

but...

threads

?

too
much
shared
state

Tuesday, May 3, 2011

Mist

Tuesday, May 3, 2011

Mist

Logic Logic Logic! !
Akka
Mist

Dispatcher !startAsync

Servlet 3.0

Tuesday, May 3, 2011

Mist

Logic Logic Logic! !
Akka
Mist

Dispatcher !startAsync

Servlet 3.0

Tuesday, May 3, 2011

Mist

Logic Logic Logic! !
Akka
Mist

Dispatcher !startAsync

Servlet 3.0

Tuesday, May 3, 2011

Mist

Logic Logic Logic! !
Akka
Mist

Dispatcher !startAsync

Servlet 3.0

Tuesday, May 3, 2011

Mist

Logic Logic Logic! !
Akka
Mist

Dispatcher !startAsync

Servlet 3.0

Tuesday, May 3, 2011

Mist

• Mist developed as Hydrogen component
• Autodesk becomes a contributor to Akka
• Releases Akka-Mist in 1.0
• Experimental extensions to Mist for Jetty Websockets (git branch)

• Contributes ActorPool in 1.1

• Looking forward to more...

akkaakka

Tuesday, May 3, 2011

Thanks

Tuesday, May 3, 2011

Thanks

Tuesday, May 3, 2011

Get it and learn more
http://akka.io

Tuesday, May 3, 2011

http://jonasboner.com/
http://jonasboner.com/

EOF
Tuesday, May 3, 2011

