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The problem

It is way too hard to build:
1. correct highly concurrent systems

2. truly scalable systems

3. fault-tolerant systems that self-heals

...using “state-of-the-art” tools
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akkaIntroducing 
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Vision

Simpler 

Concurrency 

Scalability

Fault-tolerance
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Vision

...with a single unified 

Programming model

Runtime service
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Manage system overload
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Scale up & Scale out
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Replicate and distribute 
for fault-tolerance

Tuesday, May 3, 2011



Transparent load balancing
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CORE 
SERVICES

ARCHITECTURE
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ADD-ON 
MODULES

ARCHITECTURE
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ARCHITECTURE

CLOUDY 
AKKA
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FINANCE

• Stock trend Analysis & Simulation

• Event-driven messaging systems

BETTING & GAMING

• Massive multiplayer online gaming

• High throughput and transactional 
betting

TELECOM

• Streaming media network gateways

SIMULATION

• 3D simulation engines

E-COMMERCE

• Social media community sites

SOME EXAMPLES:

WHERE IS AKKA USED?
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What is an Actor?
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Behavior

State

Actor
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Event-driven
Thread

Behavior

State

Actor
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Event-driven
Thread

Behavior

State
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Akka Actors
one tool in the toolbox
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Create Actors

$'()*+, is an -$*',?+<

Tuesday, May 3, 2011



."*!$'()*+,!/!:$*',;<=&'()*+,>@A*:,*

Start actors
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Send: !

fire-forget
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returns the Future directly
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."*!,+A(6*!/!7:$*',!BB!D+AA:E+8@:A=I*,#)E>

Send: !!

uses Future under the hood and blocks until 
timeout or completion

Tuesday, May 3, 2011



!*"##!I'J+-$*',!$+)$,-#!-$*',!.
!!-$0!,+$+#1+!/!.
!!!!!"#$!KA+,7):J+8!/2!
!!!!!!CC!(A+!,+56L

!!!!!!A+6<@,+56L7MN#!O!3!):J+8

!!9

9

Reply

Tuesday, May 3, 2011



HotSwap
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HotSwap

A+6<@()P+$'J+7)
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Set dispatcher
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Remote Actors
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Remote Actors
Client-managed
Server-managed

Problem
 Deployment (local vs remote) is a dev decision

 We get a fixed and hard-coded topology
 Can’t change it dynamically and adaptively

Needs to be a 
deployment & runtime decision

Remoting in Akka 1.0

Tuesday, May 3, 2011



Clustered Actors
(in development for upcoming Akka 2.0)
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Address

Bind the actor to a virtual address
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• Actor address is virtual and decoupled from how 
it is deployed

• If no deployment configuration exists then actor 
is deployed as local

• The same system can be configured as distributed 
without code change (even change at runtime)

• Write as local but deploy as distributed in the 
cloud without code change

• Allows runtime to dynamically and adaptively 
change topology

Deployment
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Deployment configuration
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Deployment configuration

 Address
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Deployment configuration

 Address  Type of 
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 Address  Type of 
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or Local
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Deployment configuration

 Address  Type of 
load-balancing

Clustered
or Local Home address
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Deployment configuration

 Address  Type of 
load-balancing

Clustered
or Local Home address
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in cluster
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Deployment configuration

 Address  Type of 
load-balancing

Clustered
or Local Home address

Nr of replicas 
in cluster

Stateful or  
Stateless
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• Subscription-based cluster membership service
• Highly available cluster registry for actors
• Highly available centralized configuration service
• Automatic replication with automatic fail-over 

upon node crash
• Transparent and user-configurable load-balancing
• Transparent adaptive cluster rebalancing
• Leader election
• Compute grid facilities
• Event Sourcing

The runtime provides
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Let it crash 
fault-tolerance
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The

Erlang
model
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9 nines
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...let’s take a 
standard OO 
application
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Which components have 
critically important state 

and 
explicit error handling?
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 Classification of State
• Scratch data
• Static data
• Supplied at boot time
• Supplied by other components

• Dynamic data
• Data possible to recompute
• Input from other sources; data

     that is impossible to recompute
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 Classification of State
• Scratch data
• Static data
• Supplied at boot time
• Supplied by other components

• Dynamic data
• Data possible to recompute
• Input from other sources; data

     that is impossible to recompute

Must be 
protected 

by any means
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Fault-tolerant 
onion-layered 
Error Kernel
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Error
Kernel
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Error
Kernel
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Error
Kernel
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Error
Kernel
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Node 1 Node 2
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AMQP
Dataflow

Security

...and much much more

HTTP

Guice

scalaz

JTA

FSMSTM

Spring

Camel

OSGi

Microkernel
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Project Hydrogen:
Building a distributed compute platform for design 

engineering with Akka

Garrick Evans
Autodesk, Inc
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The Big Picture

Products & Services

Data
Caching
Affinity
Results

Channels
Partitioning (Functional, QoS)
Scheduling
Routing
Security

Coordination
Fitness
Provisioning
Fault Tolerance
Load Balancing

Events
Log
Semantics
Scrutinize
Process

Audit
Operations
Analytics
Profiles

Meter
Quotas
Capacity

Hybrid Environment
Managed/Virtual
Public/Private

Customers
Customizable Offerings
Powerful On-Demand Technology
Flexibility in Access

Business
Offering
Tiering
Pricing

requirements
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Some examples

• Clustered Physically-Correct Rendering 
• Manufactured Part Design Optimization and Digital Simulation 
• 3D Model Reconstruction from Photo Scenes

Visit //Autodesk Labs for more information and trials of
Project Neon

Project Centaur
Project Photofly
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A Smaller Picture

Autodesk Software Engineer

design
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

design

REST REST
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration
Create App & Channels
Define Selector Rules

Define Provisioning Rules

•Read More
•Write Less
•Change Notifications

design

REST REST
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination Heartbeat
Update Scripts

•Amazon CloudWatch
•Custom Provisioning Triggers

design

REST REST
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute
Register
Subscribe
Update

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

design

REST REST
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

Work
Submit
Query
Cancel

•Dependency Graphs
•Scheduling & Flow

design

REST REST
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A Smaller Picture

Application Kernels

Autodesk Software Engineer

Application Clients

Configuration

•Read More
•Write Less
•Change Notifications

Coordination

•Amazon CloudWatch
•Custom Provisioning Triggers

Compute

•Durable Queuing
•ACK & Expiration
•Performance vs Cost

Work

•Dependency Graphs
•Scheduling & Flow

design

REST REST
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1.0akka
Transactors

Persistence

MongoStorage AMQP

Actors akka Actorsμkernel

 Saturation             Simple Things

μkernel

mist
0.6 1.0

sjson sjson

Atmosphere

Jersey         

implementation
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So how does Akka help?

• Actors make it easy to reason about concurrency
• Supervisors make it easy to compose fault-tolerant services
• Both it make easy to distribute functionality at the right scope

• The code, the team and the community are rock solid
• Zero production issues with the core offering

• Native Scala API to leverage power of the language

• 2 Examples...
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Supervised Services

Residents Work Compute CoordConfig

Mist
Endpoints

Mist Actors

Fitness

Data
Service

Data Actors

Provisioning
Service

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_
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Supervised Services

Residents Work Compute CoordConfig

Mist
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Mist Actors
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Service
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Service

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End 
(Client Apps)

Production Back End 
(Worker Apps)

Production Back End 
(Worker Control)

Production Admin 
(App Config)

Actor Pools

Applications
&

Channels

ZooKeeper
Service

(akka)_
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Custom Provisioning
(scala)(akka)_

‘master’ worker instance

core affinity 
 moderate-long execution times
 little sustained system pressure

local & cluster data ops  
 access additional services

 cross-worker communications

Tuesday, May 3, 2011



Custom Provisioning
(scala)(akka)_
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Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs
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Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

akka
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Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

akka
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Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

Channel Coordinator
• Run Script
• Run Program

akka
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Custom Provisioning
(scala)(akka)_

Channel Rules
• Program
• Configurations

• AMIs
• Regions & AZs

Channel Coordinator
• Scan & Monitor
• Evaluate & Become

Application Worker
• Heartbeat
• Update Script

Channel Coordinator
• Run Script
• Run Program

AWS SDK
• Run/Terminate
• Start/Stop

akka
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Custom Provisioning
(scala)(akka)_
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So what is this Mist anyway?

me:   “i'm actually rolling atmo out, i don't really need comet, i just need to delay responding. jonas offered the insight that 
explicitly creating a completable future and passing that around instead of the broadcaster would accomplish the same. !so far it 
works beautifully.  i've got one more service to replace and then take it for a spin. !re:  atmo, i just don't have the cycles any longer 
to try to bend it to my will.“

viktor:  “Ah, nice, however, that means that you're hogging a thread while waiting for the completion?  ...   yeah, I have spent too 
much time trying to bend it to my will as well, will consider dropping it in favor of either Jetty Cont/WebSockets or Netty 
WebSockets...”

me:  “That is true and I am seeing some time outs under stress testing.  Still, I'd rather have a well understood set of blocking i/o 
threads to worry about than a seemingly unbounded set hosing my jvm. ”

viktor:  “I absolutely agree”

Sept 2010

viktor:  “... so how’s it going with Atmo?”
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Mist
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Mist

POJO
@GET

Logic Logic Logic!!! !! !!
Akka 

Global 
Dispatcher ?
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Akka 
Global 

Dispatcher

but...

threads

?

too 
much 
shared 
state
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Mist

Tuesday, May 3, 2011



Mist

Logic Logic Logic! !
Akka 
Mist 

Dispatcher !startAsync

Servlet 3.0
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Mist

• Mist developed as Hydrogen component
• Autodesk becomes a contributor to Akka
• Releases Akka-Mist in 1.0
• Experimental extensions to Mist for Jetty Websockets (git branch)

• Contributes ActorPool in 1.1

• Looking forward to more...

akkaakka
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