Above the Clouds:

Jonas Bonér - Scalable Solutions
Garrick Evans - Autodesk




[ he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools




1
T
o
N
)
>
©
=
>
©
o]
)
o)
S
T



Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Tuesday, May 3, 2011



Vision

.with a single unified

Programming model

Runtime service

Tuesday, May 3, 2011



Manage system overloaa

Tuesday, May 3, 2011



(XXX X]] oo00000 eseosss
9= !

|

Scale up & Scale out

Tuesday, May 3, 2011



vy

i el 2. 4

2e BN .s

o ”.Aa‘(.‘l'l‘

Tuesday, May 3, 2011



© Bob Elsdale

Tuesday, May 3, 2011



ARCHITECTURE

4 B
Fault-tolerance

Remote
Actor

Local

Actor

Supervision Supervision

4 N
Scalability
Client
Managed Cluster
Remote Membership
Actors
—
(" )
Concurrency
Actors STM Agents Dataflow

CORE

—

-RVICES

Tuesday, May 3, 2011



ARCHITECTURE

=

AMQP

~
7

Fault-tolerance

ADD-ON
MODULE

N
Scalability
Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors

~
v

Concurrency

= =)=

Tuesday, May 3, 2011



ARCHITECTURE
=[S
) e
alallal e

~

~

Fault-tolerance

Local Remote
Actor Actor
Supervision Supervision
' B
Scalability
Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors

Concurrency

B

CLO
AK

N
.

Tuesday, May 3, 2011

-

DY

>



WHERE IS AKKA USED?

SOME

- XAMPL

=S

FINANCE

® Stock trend Analysis & Simulation

® [vent-driven messaging systems

BETTING & GAMING

® Massive multiplayer online gaming

® High throughput and transactional

betting

TELECOM

® Streaming media network gateways

SIMULATION

® 3D simulation engines

E-COMMERCE

® Social media community sites




|
|
|




Tuesday, May 3, 2011



Eventd —driver

7 Aread




Eventd —driver

7 Aread

4 clor

Be/’}a\//o/‘

State

Uall




Eventd —driver

7 Aread




Eventd —driver

7 Aread




Eventd —driver

7 Aread




Tuesday, May 3, 2011



Eventd —drivenr

7 Aread




Akka

N the toolbox




Actors

case object Tick

4 A

class Counter extends Actor {
var counter = 0

def receive = {
case Tick =>
counter += 1
println(counter)

Tuesday, May 3, 2011



Create Actors

[ val counter actor‘Of[Counter‘])

counter is an ActorRef




Start actors

Gal counter = actor‘Of[Counter‘].star‘t)




Stop actors

4 )

val counter = actorOf|[Counter].start
counter.stop ,




Send:!

[counter‘ ! Tick)

fire-forget




Send: !

4 )
// returns a future
val future = actor !!! Message

future.await
val result = future.result

\_ /

returns the Future directly

Tuesday, May 3, 2011



Future

-

val futurel, future2, future3 = A
hew DefaultCompletableFuture(1000)

futurel.await
future2.onComplete(f => ...)

futurel.completeWithResult(...)
future2.completeWithException(...)
future3.completeWith(future2)

\_ /

Tuesday, May 3, 2011



Future

/7/ Blocking
Futures.awaitOne(futures)
Futures.awaitAll(futures)

// Non-blocking
val f = Futures.firstCompletedOf(futures)

val f = Futures.reduce(futures)((x, y) => ..)
val f = Futures.fold(zero)(futures)((x, y) => ..)

(S

Tuesday, May 3, 2011



(val result = (actor !! Message).as[Str‘ingD

uses Future under the hood and blocks untll
timeout or completionr

Tuesday, May 3, 2011



Reply

-

class SomeActor extends Actor {

def receive = {
case User(name) =>
// use reply
self.reply(“Hi ” + name)

~

/

Tuesday, May 3, 2011



HotSwap

-~

self become {

// new body
case NewMessage =>




HotSwap

-

actor ! HotSwap {

// new body
case NewMessage =>

~




HotSwap

C self. unbecome(D




Set dispatcher

-~

self.dispatcher

}...

actor.dispatcher

\_

class MyActor extends Actor {

= Dispatchers

.newThreadBasedDispatcher(self)

dispatcher // before started

/

Tuesday, May 3, 2011



Actors




Remoting in Akka 1.0

Remote Actors

Client-managed
Server-managed

Problem

' Deployment (local vs remote) is a dev decision

We get a fixed and hard-coded topology
Can’t change it dynamically and adaptively

Needs to be a
deployment & runtime decision




Actors

(in development for upcoming Akka 2.0)




Address

(val actor = actorOf[MyActor](“my—service”))

Bind the actor to a virtual address

Tuesday, May 3, 2011



Deployment

* Actor address is virtual and decoupled from how
| it is deployed
* If no deployment configuration exists then actor |

is deployed as local
' * The same system can be configured as distributed
without code change (even change at runtime) r
|
| Write as local but deploy as distributed in the
| cloud without code change
' * Allows runtime to dynamically and adaptively ‘

- change topology (

|
|
|
\
.
|
l

|

—_—

Tuesday, May 3, 2011



Deployment configuration
~

akka {
actor {
deployment {
my-service {

router = "least-cpu”

clustered {
home = ["darkstar.lan", 2552]
replicas = 3
stateless = on




Deployment configuration

4 )
akka { 240/0//‘855 ]
actor { )
deploym {

my-service {
router = "least-cpu”
clustered {
home = ["darkstar.lan", 2552]
replicas = 3
stateless = on




Deployment

configuration

N\

akka {

Address ]

-

N
7;//9@ of’

deploymgé%i;

actor {
my-service {
router "1
clustered {
home = ["
replicas
stateless

/ [oad-ba/ anc/ngj

east-cpu”

darkstar.lan", 2552]
3
on

Tuesday, May 3, 2011



Deployment configuration

-

J

‘%

p
Clewstered

or loca/

my-service {

router "1

clustered {
home = ["
replicas
stateless

}

N\
4 A
akka { { Address ] 7Type of
actor X \
deploym { /OQO/"AQ/QHC/ngj

east-cpu”
darkstar.lan", 2552]

3
on

Tuesday, May 3, 2011



Deployment configuration

N\
4 p
akka { Address j Type of
actor { A :
deploym ; A/oao/ Aa/ancu?g)
my-service { /44;
router = "least-cpu”
clustered {
/13/ . 07:777, home = ["darkstar.lan", 2552]
2SR replicas = 3
\or Z.oca// } stateless = on Y ome aa/a/reééj
}
}
}
}

Tuesday, May 3, 2011



Deployment configuration

akka {

-

J

‘%

p
Clewstered

or loca/

Address ]
actor { _
deploym { /44;f

router = "least-cpu”

my-service {
clustered {

replicas
stateless

}

home = ["darkstar lan™, 2552]

_ \ \%/ome address j

4 — )

7;//9@ of’

/ oad —-Aﬁ/ d/?Cl/hgj

\_

Nr of /‘ep/ / CQS

in cluster
Y,

J

Tuesday, May 3, 2011



Deployment configuration

my-service {

clustered {

/
akka { 240’&@55 ]
actor { )
deploym { /44;}

router = "least-cpu”

4 — ™\

7;//9@ of’

Joad —bal. anc/ngj

]

’1:/ y a;:;;7, home = [° darkstar lan", 2552]
cscere replicas =
\o/‘ Z.oca/) } stateless = \ Voo cddress
A [
Sz‘az‘er” a/ or Nr of rep/i caé
State/ess . in Cclwster ’
N Y,
NS J

Tuesday, May 3, 2011



The runtime provides

| * Subscription-based cluster membership service

* Highly available cluster registry for actors

 » Highly available centralized configuration service
'« Automatic replication with automatic fail-over

* upon node crash

- Transparent and user-configurable load-balancing
' * Transparent adaptive cluster rebalancing

Leader elect.ion -

' Compute grid facilities
-+ Event Sourcing

Tuesday, May 3, 2011



fault-tolerance




The

model




Tuesday, May 3, 2011



- - e

.. lel ‘5 Z‘dée A
standard OO







.L‘.-‘ el

‘ 7Y Vo lla¥g, Ciomponenfé Aave

- critical Ny importapt state







C/ assSificalion of SZ‘QZ‘&
" Scratch data f‘
- Static data

- S&(pp/ red ad boot Tine
" Sapp/ red A}/ oZ‘/’/e/‘ Ciomponen’é‘é

| © Dyna/n/c dad a
|

g In/%(z‘ £ fonr ot /7@/‘ SourlesS dcla |

|
‘
|

- Data poééfé/e o /‘eCO/y/paZ‘e

thad 1S /‘Mpo\S S /‘A/ e Co /‘eCLOM/OL(Z‘e
_ _ . )

— — —_— — = -  — __ ___ __ — — — — — __——— _— — _— ——— - __ —




* Ihput From other Sources ; data
AL 15 /‘MPOS sible Zo reCLoMPL(Z‘e

Tuesday, May 3, 2011



Mees? Ae
protected
éy any Peans

|
|

- In/%(z‘ r” Forn oz‘/ver Sources ;, data
AL 15 /MPOSS/A/e Zo /‘eCLOM/OL(Z‘e




. “e_ o p Y i b \
0' - - : 3 ’.{ /’ ""4 (‘.

| o
et i A o
. | i o

a"‘,/ |
o
.
f

A

7/

! // -

Tuesday, May 3, 2011






ERROR
KERNEL

Tuesday, May 3, 2011



ERROR
KERNEL

Tuesday, May 3, 2011




ERROR
KERNEL

Tuesday, May 3, 2011




ERROR
KERNEL

Tuesday, May 3, 2011



ERROR
KERNEL

O ARQ0Y
OLONC

%

00O OO 0OC

Tuesday, May 3, 2011



ERROR
KERNEL

O ARQ0Y
OLONC

%

00O OO 0OC

Tuesday, May 3, 2011



ERROR
KERNEL

FOAHDAOY
OLONTC

\C
D C

Tuesday, May 3, 2011



ERROR
KERNEL

Tuesday, May 3, 2011



ERROR
KERNEL

Yy C
SOORC
(O O@

Tuesday, May 3, 2011




ERROR
KERNEL

Yy C
SOOI
(O O@

Tuesday, May 3, 2011




ERROR
KERNEL

Sloxel®

Tuesday, May 3, 2011




ERROR
KERNEL

Sloxel®

Tuesday, May 3, 2011




ERROR
KERNEL

Tuesday, May 3, 2011



ERROR
KERNEL

Tuesday, May 3, 2011



Tuesday, May 3, 2011



Tuesday, May 3, 2011



NODE 1 NODE 2

Tuesday, May 3, 2011



..and
STM

FSM
HT TP Camel
Microkernel Gulce
JTA
Dataflow
0OSG AMQP

scalaz Spring  Security




°roject Hydrogen:
Building a distributed compute platform for
engineering with

Autodesk, Inc

Tuesday, May 3, 2011



[ he Big Picture

Jesk’ 3ds Max

dinment Creation Sute

Scale Your

AN T S e gt T ORI P F P

Sign in to your account

Customers

Customizable Offerings

Powerful On-Demand Technology
Flexibility in Access

Business .
Offering ,.Q\\
Tiering ¢ *
Pricing )

Products & Services

Channels Ppg—
Data e , LRLWL
Caching Partitioning (Functional, QoS) 5 KA

Scheduling
Routing £
Security

Coordination
Fithess
Provisioning
Fault Tolerance
Load Balancing

amazon
web services"

Hvbrid Environment
Managed/Virtual
Public/Private

requirements

Meter
Quotas
Capacity

Events
Log
Semantics
Scrutinize
Process

Audit
Operations
Analytics
Profiles

Tuesday, May 3, 2011



Some examples

Clustered Physically-Correct Rendering
Manufactured Part Design Optimization and Digrtal Simulation
3D Model Reconstruction from Photo Scenes

Visit //Autodesk Labs for more information and trials of
Project Neon
Project Centaur
Project Photofly

Tuesday, May 3, 2011



design

A Smaller Picture

Py Hydrogen

Autodesk Software Engineer

Tuesday, May 3, 2011



design

A Smaller Picture

Application Clients . Application Kernels

-

Autodesk Software Engineer

Tuesday, May 3, 2011



design

A Smaller Picture

Application Kernels

Application Clients
/

e Read More
*Write Less
* Change Notifications

Autodesk Software Engineer

Tuesday, May 3, 2011



design

A Smaller Picture

e
Application Kernels
‘ g SE RS
4 q =

-

Application Clients
[

e Read More
*Write Less
* Change Notifications

* Amazon CloudWatch
* Custom Provisioning Triggers

Autodesk Software Engineer

Tuesday, May 3, 2011



design

A Smaller Picture

P Hydrogen

L —

- \“‘
——

x_\

-

Application Clients —~—

B o

-

° 7

* Durable Queuing

el . * ACK & Expiration
. * Performance vs Cost
.
R
*Read More ’ Enginsering LLLIARIIEH
* Amazon CloudWatch e \Write Less Y o Mochanic PN

* Custom Provisioning Triggers « Change Notifications

o)
-ttt e 4%

— -

o

Autodesk Software -Engineer

Tuesday, May 3, 2011



design

A Smaller Picture

P Hydrogen

Application Clients
/

Application Kernels

><

“rrramazon
“7 webservices
g

gr

o

* Dependency Graphs . :«50§2 ? * Durable Queuing
: oE P NgL [ty — * ACK & Expirati
rocheduling & Flow gﬂﬁol@#% 7 T . °Performa>r<12£/|so(r:]ost
- O-O0-0-0€ .
« Amazon CloudWatch *Read More
e Cuyst P isionine Tri *\Write Less
ustom rrovisioning Iriggers °Change Notifications

Tuesday, May 3, 2011

-

Autodesk Software Engineer




Application Clients

design

A Smaller Picture

\&

-

N
5 >

gr

Application Kernels

_ AN
“rramazon
1g “b SErvICes

Tuesday, May 3, 2011

* Dependency Graphs . :«50§2 ? * Durable Queuing
: oE P NgL [ty — * ACK & Expirati
rocheduling & Flow gﬂﬁol@#% 7 T . °Performa>r<12£/|so(r:]ost
- O-O0-0-0€ .
« Amazon CloudWatch *Read More
e Cuyst P isionine Tri *\Write Less
ustom rrovisioning Iriggers °Change Notifications

-

Autodesk Software Engineer




implementation

E2 Saturation Simple Things

-wﬁ*’/'

0.

*“amazon B RabbIt

S

- Apache ZooKeep er’"\h_._'_a

-~

'gscribe - Flume

Tuesday, May 3, 2011



SO how does help?

Actors make It easy to reason about concurrency
Supervisors make It easy to compose fault-tolerant services
Both it make easy to distribute functionality at the right scope

The code, the team and the community are rock solid
production issues with the core offering

Native Scala API to leverage power of the language

2 Examples...

Tuesday, May 3, 2011



Supervised Services

(akka)_




Supervised Services

(akka)_




Supervised Services

(akka)_




Supervised Services

(akka)_




(akka)_

Supervised Services

Dev Local

Dev EC2 Apps
Dev EC2 Control

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local

Dev EC2 Apps
Dev EC2 Control

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local \

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local \

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local \

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local \

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local \

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End
(Worker Apps)

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End ‘
(Worker Apps)

Production Back End
(Worker Control)

Actor Pools

Tuesday, May 3, 2011



(akka)_

Supervised Services

Dev Local

Dev EC2 Apps
Dev EC2 Control

Staging Apps
Staging Coord
Staging Config

Production Front End
(Client Apps)

Production Back End ‘
(Worker Apps)

Production Back End
(Worker Control)

Production Admin
(App Config)

Actor Pools

Tuesday, May 3, 2011



(scala)(akka)_

Custom Provisioning

CeCo
YL

I core affinity
® moderate-long execution times
® little sustained system pressure

®  local & cluster data ops
® access additional services
® cross-worker communications

=

Tuesday, May 3, 2011



Custom Provisioning

(scala)(akka)_




(scala)(akka)_

Custom Provisioning

. Channel Rules
* Program
* Configurations
* AMls
* Regions & AZs

»
'Apache ZooKeeper™ “—_—»

Tuesday, May 3, 2011



(scala)(akka)_

Custom Provisioning

. Channel Rules
* Program
* Configurations
* AMls
* Regions & AZs

»
'Apache ZooKeeper™ “—_—»

Channel Coordinator
e Scan & Monitor
e Fvaluate & Become

akka

Tuesday, May 3, 2011



(scala)(akka)_

Custom Provisioning

. - . Channel Rules
. * Program
* Configurations
Apache ZooKeeper™ " » . Regions &AZS
Channel Coordinator

e Scan & Monitor <€
e Fvaluate & Become

Application Worker
* Heartbeat
* Update Script

akka

Tuesday, May 3, 2011



Custom Provisioning

Apache ZooKeeper™ “-___»

Channel Coordinator
e Scan & Monitor <

)

Channel Rules

* Program
* Configurations
* AMls
* Regions & AZs

e Fvaluate & Become

akka

#Scala

Channel Coordinator
* Run Script
* Run Program

(scala)(akka)_

Application Worker
* Heartbeat
* Update Script

Tuesday, May 3, 2011



Custom Provisioning

Channel Rules
* Program
* Configurations
* AMls
* Regions & AZs

s
| |
é »
Channel Coordinator

e Scan & Monitor <
e Fvaluate & Become

akka

#Scala

Channel Coordinator
* Run Script
* Run Program

> amazon

webservices"

(scala)(akka)_

Application Worker
* Heartbeat
* Update Script

AWS SDK
e Run/Terminate

e Start/Stop

Tuesday, May 3, 2011



(scala)(akka)_

Custom Provisioning

def recv: Actor.Receive =
{
case Channel . EvaluateRule(which, kind, raw) =
def generator[T]: T = {
log.info( + which + + kind +
val kindx = Symbol(kind) ? Js.str
val kindx(clazz) = Serializer.SJSON.in(raw)

Class. forName(clazz).newInstance.asInstanceOf[T)]
}

case _ =>
kind match {

trait

{
def
def

def
{

}

RuleHandler

rule:String
w;n;;w(msg:StPiﬂg)inNﬁ

recv:Actor.Receive =

case Channel.RunRule(tag:String, program:String) if (tag == rule) => handle(program)

case RuleEvaluator.kind => generator[RuleEvaluator] eval (_env, raw)

cate RuleHandler.kind =>

val handler: RuleHandler = generator

vl ey § w aoverl it or
LS50 N # | vOoLUGTD

case post: Post =>

segment(?) match {
case ServiceEndpoint.Heartbeat =>

if (handler.isInstanceOf[RuleEvaluator]) handler.asInstanc

f{"“,'...‘.ru\" + nanaser.rule +

become(recv orElse handler.recv)

val tick = System.currentTimeMillis
val last = _heartbeatTimestamps.getOrElse(id, (tick, 9))
_heartbeatTimestamps(id) = (tick, last._.1)
if (_heartbeatStatus.isDefinedAt(id)) {
if (ltag.isEmpty) {
self 1 Channel.RunRule(tag, program)
}

post.complete(status, )
}

Tuesday, May 3, 2011



S0 what Is this anyway/?

Sept 2010

: "..50 how's It going with Atmo?”

:"I'm actually rolling atmo out, i don't really need comet, I just need to delay responding. jonas offered the insight that

explicitly creating a completable future and passing that around instead of the broadcaster would accomplish the same. so far it
works beautifully. I've got one more service to replace and then take it for a spin. re: atmo, i just don't have the cycles any longer
to try to bend it to my will.”

: “Ah, nice, however, that means that you're hogging a thread while waiting for the completion? ... yeah, | have spent too

much time trying to bend it to my will as well, will consider dropping it in favor of either Jetty Cont/VWebSockets or Netty
WebSockets..”

: “That is true and | am seeing some time outs under stress testing. Still, I'd rather have a well understood set of blocking i/o
threads to worry about than a seemingly unbounded set hosing my jvm. "

: " absolutely agree”

Tuesday, May 3, 2011



S0 what Is this anyway/?

Sept 2010

: "..50 how's It going with Atmo?”

0 I'm actually mollingatmercutriscontrealbaneed comet, | just need to delay responding. jonas offered the insight that

expliciity creating a completable future and passing that around insiead of the broadcaster would accomplish the same. so far it
works beautituily. I'Vegotienesmare cerviceionepials and then take it for a spin. re: atmo, i just don't have the cycles any longer
to try to bend it to my will.”

: “Ah, nice, however, that means that you're hogging a thread while waiting for tha«agrigiation? .. yeah, | have spent too
much time trying to bend it to my will as well, will consider dropping it in favor of either Jetty Cont/VVebSockets or Netty
WebSockets..”

. “That is true and | am seeiite some time outs under stress testing.. Still
threads to worry about than a seemingly Unoourited setiosing my jvm. &

o

haVe a well understood set of blocking i/o

: " absolutely agree”

Tuesday, May 3, 2011



Tuesday, May 3, 2011



?-

Tuesday, May 3, 2011



IHREADIKILTER

Tuesday, May 3, 2011



Tuesday, May 3, 2011



Tuesday, May 3, 2011



Tuesday, May 3, 2011



buckets entries

'--1 Usa Smith I 521

Usé Seath
Sam Doe
Sandra Dee

%od Baker

Tuesday, May 3, 2011



buckets entries

'--1 Usa Smith I 521

Usé Seath
Sam Doe
Sandra Dee

%od Baker

Tuesday, May 3, 2011



keys buckets entries

I Usa Smith I'-:l

Jhn Smith

Usé S=ath

Sam Doe

Sandra Dee

wod Baker

Tuesday, May 3, 2011



Tuesday, May 3, 2011



startAsync

Tuesday, May 3, 2011



o ! ] -\ £ — - r 4 g [ [ -~
aandie ootn types 01 JOD metaddtd gets (system & cUustom

case get: Get =>

try {
get.response setContentType MediaType.APPLICATION_JSON

get.request.getRequestURI.substring(MetadataServiceEndpoint. Path.length).split( ) match {
case Array(Capp, job) => process(app, job, )
case Array(app, MetadataServiceEndpoint.Client, job) => process(app, , Job)

case _ =>
get NotFound
Log.warning( + get.toString + )
}
def processCapp: String, job: String, client: String) = JobMetadataActor() ! JobMetadataActor.Read(app, job, client, Some(get))
}
catch {
case ex =>

get complete ex

log.error(ex, + get.toString + )

H

Tuesday, May 3, 2011



{
handle both types of job metadata gets (system & custom IDs)
val worker = request.getParameterOrElse(Parameters.WorkerID,(Any)=>" ")
¢ _filter(job.id, handle, context, qto) match {
case Some(_) =>
Log.debug( + context + +worker+ + request + y]
def finish = {
1f (!request.OK(new String(payload))) {
log.warning(
}
}
JobMetadataActor() ! JobMetadataActor.UpdateHandle(app, job.id, handle, worker, finish _)
log.error(ex, + get.toString + )
}

Tuesday, May 3, 2011



{ def receive =
) 4 » 5 —— . {
handie both types of jJob metadata gets (system & custom 1Ds) case update: UpdateHandle =>
val worker = request.getParameterOrElse(Parameters.WorkerID,(Any)=>" ")
¢ _filter(job.id, handle, context, qto) match { val read = load(update.app) _
case Some(_ ) => val item = query(List((Headers.JobID, update.id)))
Log.debug( + context + +Wor val (table, job) = read(item)
val write = this.update(table)(item) _
def finish = {
job.put(Headers. JobHandle, update.handle)
write the job data to the worker and resume job.put(Parameters.WorkerID, update.worker)
write(job)
1f (!request.OK(new String(payload))) {
log.warning( update.complete()
}
}

JobMetadataActor() ! JobMetadataActor.UpdateHandle(app, job.id, handle, worker, finish _)
log.error(ex, + get.toString + )

}
Tuesday, May 3, 2011



handle both

case update: UpdateHandle =>
val worker =

¢ _filter(job.id val read = load(update.app) _
case Some(_ val item = query(List((Headers.JobID, update.id)))
Log.debug val (table, job) = read(item)
val write = this.update(table)(item) _
def finish
job.put(Headers. JobHandle, update.handle)
write the job data to the worker and resume job.put(Parameters.WorkerID, update.worker)
write(job)
1f (!request.OK(new String(payload))) {
Log.warning( update.complete()
JODO: requeue here
}
}
" store the msg handle as metadata

JobMetadataActor() ! JobMetadataActor.UpdateHandle(app, job.id, handle, worker, finish _)
log.error(ex, + get.toString + )

}
Tuesday, May 3, 2011




Mist developed as Hydrogen component

Autodesk becomes a contributor to Akka

Releases Akka-Mist in 1.0

Experimental extensions to Mist for Jetty VWebsockets (git branch)
Contributes ActorPool in .|

L ooking forward to more..

Tuesday, May 3, 2011



[ hanks




[ hanks

Autodesk’
SketchBook
Mobile

Autodesk
MDD JECT e 34 sy

Tuesday, May 3, 2011



http://akka.io



http://jonasboner.com/
http://jonasboner.com/

Tuesday, May 3, 2011



