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Why We’re Here

•Discuss why we chose MongoDB at Visibiz

•Show how we’re using it

•Made mistakes Learned along the way

•Not a sales pitch



About Us
•Startup

• Founded April, 2010 

•8 employees

• Located just outside of Philadelphia, PA

•Social CRM

• ‘know your network...sell better’

• Currently in limited beta

•Sign up at www.visibiz.com
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How Did We Get To MongoDB?



Application Requirements

•Application requirements for extensibility

• customer extensible objects

• customer definable objects

•Scalability



Extensible Objects

•We provide core objects

• person, company, prospect, relationship, etc.

• Customer can add their own attributes

• including relationships with other objects

•A ‘person’ object for customer #1 may not look like a ‘person’ 
object for customer #2



• Person
•name
• address
• date of birth
• employment history

• list:
• company
• begin date
• end date
• job title

• Person
•name
• address
• date of birth
• gender
•hobbies

• list:
•name

CUSTOMER #1     CUSTOMER #2

<= Core Attributes  =>

<= Customer Defined =>
 Attributes



Customer Definable Objects

•Give customers ability to define their own objects

• collection of attribute names, types

• relationships with other objects



Scalability

•Will eventually have large amount of data

• social networks, blogs, articles, etc.

• email

•Scaling should be (relatively) easy



What We Liked About MongoDB
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What We Liked About MongoDB

•Dynamic schemas (“schema-free”)

• fit well with our extensibility requirements

•Document datastore

• easy to understand, visualize objects

• cmd shell, log files, debuggers, viewers



Schema Flexibility Comparison

•Relational vs. document-based

•Support extensible ‘person’ object



Person Id User Defined 1 User Defined 2 User Defined 3 User Defined 4 ...

1 Good Burger 3/20/1998 3/31/2010 Flipper

1 Visibiz 4/1/2010 <null> Tech Lead

2 10gen 7/9/2006 3/18/2009 Engineer

Column Name Type

User Defined 1 Company String

User Defined 2 Begin Date Date

User Defined 3 End Date Date

User Defined 4 Job Title String

Person Id Name Address
Date of
Birth

1 Mike Brocious Malvern, PA 6/10/1984

2 Doug Smith Philadelphia, PA 2/24/1980

Relational Database Example



Document Datastore Example
{
 "_id" : ObjectId("4d87a4d32739a23b3c834b67"),
 "name" : "Mike Brocious",
 "address" : "Malvern, PA",
 "dateOfBirth" : "Sun Jun 10 1984 00:00:00 GMT-0400 (EDT)",
 "employmentHistory" : [
  {
   "company" : "Good Burger",
   "beginDate" : "Sun Mar 20 1998 00:00:00 GMT-0400 (EDT)",
   "endDate" : "Thu Mar 31 2010 00:00:00 GMT-0400 (EDT)",
   "jobTitle" : "Flipper"
  },
  {
   "company" : "Visibiz",
   "beginDate" : "Fri Apr 01 2010 00:00:00 GMT-0400 (EDT)",
   "jobTitle" : "Engineer"
  }
 ]
}



Document Datastore Example
{
 "_id" : ObjectId("4d87a4d32739a23b3c834b67"),
 "name" : "Mike Brocious",
 "address" : "Malvern, PA",
 "dateOfBirth" : "Sun Jun 10 1984 00:00:00 GMT-0400 (EDT)",
 "employmentHistory" : [
  {
   "company" : "Good Burger",
   "beginDate" : "Sun Mar 20 1998 00:00:00 GMT-0400 (EDT)",
   "endDate" : "Thu Mar 31 2010 00:00:00 GMT-0400 (EDT)",
   "jobTitle" : "Flipper"
  },
  {
   "company" : "Visibiz",
   "beginDate" : "Fri Apr 01 2010 00:00:00 GMT-0400 (EDT)",
   "jobTitle" : "Engineer"
  }
 ]
}

{
  "_id": ObjectId("4d87a9732739a23b3c834b6d"),
  "name": "Julie Harper",
  "address": "Ocean City, NJ",
  "dateOfBirth": "Thu Sep 22 1994 00:00:00 GMT-0400 (EDT)",
  "gender": "F",
  "hobbies": [
      "painting",
      "skateboarding",
      "reading",
      "cooking"
  ]
}
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More MongoDB Goodness

•Scalability

• replication - easy to setup

• sharding



More MongoDB Goodness

•Scalability

• replication - easy to setup

• sharding

•Uses JSON

• “the new XML”

• easy to build, parse and read

• great support from tools, languages and services



JSON

• JSON * (MongoDB + Groovy + Grails + JavaScript) == LOVE

•MongoDB == BSON/JSON

•Groovy == Map

•Grails == JSON converter/builder

• JavaScript = Well...it’s the JS in JSON



JSON-eze

• Every layer of the application understands common format 

•Not forced into transforming data 

•DB result sets <--> DO/DTO

•DO/DTO <--> view

• view <--> presentation

• Enables rapid development
Data Access

DB

Services

Controller

View

Presentation

J
S
O
N



What Else We Liked About MongoDB

•Active product development

• Community support

• plugins, drivers, viewers

•10gen support

• developers, CEO very active on forum, JIRA

•MongoDB conferences, webcasts

•Deep list of sites already using MongoDB



Be Aware Of...

•No transactions

•mitigation: schema design + atomic document updates

•No really complex queries (JOINs, nested SELECTs)

•mitigation: schema design

• Felt we could minimize the impact



•OK, so that’s WHY

• Let’s get into the HOW



Application
Layers Browser

Controller

Application Svcs (bus. logic)

MongoService Morphia

MongoDB Java driver

MongoDB

Home-grown 
convenience wrapper 
around Java driver

Lightweight object-
mapping library



Our Primary Collections

•Things

•Rels



Things         

•Our main collection: “things”

•Domain objects (person, company, note, event, etc.)

• Customer-defined objects

•Takes advantage of ‘schema-free’ nature of MongoDB

• able to easily query across all types



{   "_id" : ObjectId("4d10f60f39fe153be3316478"),
 "thingType" : "person",
 "name" : {
  "firstName" : "Gail",
  "lastName" : "Staudt"
 },
 "owner" : ObjectId("4d10f47e39fe153b552e6478"),
 "createdDate" : "Tue Dec 21 2010 13:46:39 GMT-0500 (EST)",
 "tags" : [
  {
   "tag" : "java",
   "score" : 2
  },
  {
   "tag" : "clojure",
   "score" : 2
  }
 ],
 "addresses" : [
  {
   "addr1" : "40 Lloyd Ave",
   "city" : "Malvern",
   "state" : "PA"
  }
 ],
 "emailAddresses" : [
  {
   "type" : "work",
   "value" : "staudt@foo.com"
  }
    ]
}

‘Person’ Thing

mailto:staudt@foo.com
mailto:staudt@foo.com


{
 "_id" : ObjectId("4d10ffe939fe153b193b6478"),
 "thingType" : "company",
 "name" : "We Be Coders, Inc."
 "owner" : ObjectId("4d10f60e39fe153b20316478"),
 "createdDate" : "Tue Dec 21 2010 14:28:41 GMT-0500 (EST)",
    "primaryBusiness" : "Software development consulting"
 "tags" : [
  {
   "tag" : "software",
   "score" : 2
  },
  {
   "tag" : "development",
   "score" : 7
  },
  {
   "tag" : "clojure",
   "score" : 3
  },
  {
   "tag" : "java",
   "score" : 5
  }
 ]
}

‘Company’ Thing



{
 "_id" : ObjectId("4d10ffe939fe153b193b6478"),
 "thingType" : "company",
 "name" : "We Be Coders, Inc."
 "owner" : ObjectId("4d10f60e39fe153b20316478"),
 "createdDate" : "Tue Dec 21 2010 14:28:41 GMT-0500 (EST)",
    "primaryBusiness" : "Software development consulting"
 "tags" : [
  {
   "tag" : "software",
   "score" : 2
  },
  {
   "tag" : "development",
   "score" : 7
  },
  {
   "tag" : "clojure",
   "score" : 3
  },
  {
   "tag" : "java",
   "score" : 5
  }
 ]
}

> db.things.find({owner: ObjectId(“4d10f60e39fe153b20316478”), 
                  tags.tag: “java”})

• Find all things I own tagged with ‘java’

‘Company’ Thing
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Relationships - Act One

• Connections between things

• employment history

• co-workers, friends

• First cut: separate documents in the things collection

• essentially a mapping/join table



A Brel

Relationships - Act One



A Brel

•Single atomic insert (good! no transaction concerns)

•Made retrieval inefficient (no JOINs, nested SELECTs)

Relationships - Act One



Relationships - Act One

me = ObjectId(“4d10f60e39fe153b20316478”)

// Get all the relationships I’m involved in
related = db.things.find({$or: [left.id: me,
                                right.id:me]})

// Build up a list of ids I’m related to
i = 0
relatedId = new Array()
for(relationship in related)

if (relationship.left.id == me) {
    relatedIds[i++] = relationship.right.id
} else {
   relatedIds[i++] = relationship.left.id
}

)

// Now get the things
relatedThings = db.things.find({_id: { $in : relatedIds } })

Find all things I’m related to



Relationships - Act Two

•Moved relationships to nested document inside thing

•natural approach for document-based datastores

A B



Relationships - Act Two

•Queries easy and fast - awesome!
// Get all the things I’m related to
relatedThings = db.things.find({$or: [rels.left.id: me,
                                      rels.right.id:me]})



Relationships - Act Two

•Two updates required to insert new relationship

• relationship stored in both things

• bad! - transaction concerns

•Queries easy and fast - awesome!
// Get all the things I’m related to
relatedThings = db.things.find({$or: [rels.left.id: me,
                                      rels.right.id:me]})



Relationships - Act Three (final?)
•Best of both worlds
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Relationships - Act Three (final?)
•Best of both worlds

• Separate “rels” collection

•master source of relationship details

• atomic insert (good!)

• unique index (good!)

•Nested “rels” documents in things

• easy, fast queries (good!)

A rel B

A B

insert / delete



Other MongoDB Collections

•Workflow status log

•Query log

•Staging area for imported data

•Users

•Duplicates scan log



REST

•RESTful interface on top of services

• Expose services for internal and 
external development (API)



REST

•RESTful interface on top of services

• Expose services for internal and 
external development (API)

•MongoDB doesn’t enforce datatypes, object shape

•Need a way to validate data to prevent “garbage in”

• JSON schema

•http://json-schema.org/

http://json-schema.org/
http://json-schema.org/


Person Schema    person = [
        name: "person",
        type: "object",
        extends: "contact",
        
        properties: [
            name: [type: "object", 
                   title: "Name", 
                   properties: [
                       firstName:  [type: "string", 
                                    title: "First Name",
                                    optional:true],
                       middleName: [type: "string", 
                                    title: "Middle Name", 
                                    optional: true],
                       lastName:   [type: "string", 
                                    title: "Last Name",
                                    optional: true],
                       suffix: [type: "string", 
                                title: "Suffix",
                                optional: true]]]]]
    



Thing Schemas

•Separate “schemas” MongoDB collection

• Every “thing” passes through validation before being stored

•Uses:

• validate incoming data

• track customer-specific schema extensions

• generate UI to display things



Summary

•Why MongoDB works for us

•Schema-free

•Document-oriented

• JSON

•Scalable

•Active product

• Free



Questions?


