
MongoDB at Visibiz

Why and how we’re using MongoDB in our application

Mike Brocious
Tech Lead

Visibiz, Inc.

Why We’re Here

•Discuss why we chose MongoDB at Visibiz

•Show how we’re using it

•Made mistakes Learned along the way

•Not a sales pitch

About Us
•Startup

• Founded April, 2010

•8 employees

• Located just outside of Philadelphia, PA

•Social CRM

• ‘know your network...sell better’

• Currently in limited beta

•Sign up at www.visibiz.com

Apache

Tomcat
-

Grails application

MongoDB Elastic
Search

Amazon EC2

Physical
Components

Unix

How Did We Get To MongoDB?

Application Requirements

•Application requirements for extensibility

• customer extensible objects

• customer definable objects

•Scalability

Extensible Objects

•We provide core objects

• person, company, prospect, relationship, etc.

• Customer can add their own attributes

• including relationships with other objects

•A ‘person’ object for customer #1 may not look like a ‘person’
object for customer #2

• Person
•name
• address
• date of birth
• employment history

• list:
• company
• begin date
• end date
• job title

• Person
•name
• address
• date of birth
• gender
•hobbies

• list:
•name

CUSTOMER #1 CUSTOMER #2

<= Core Attributes =>

<= Customer Defined =>
 Attributes

Customer Definable Objects

•Give customers ability to define their own objects

• collection of attribute names, types

• relationships with other objects

Scalability

•Will eventually have large amount of data

• social networks, blogs, articles, etc.

• email

•Scaling should be (relatively) easy

What We Liked About MongoDB

What We Liked About MongoDB

•Dynamic schemas (“schema-free”)

• fit well with our extensibility requirements

What We Liked About MongoDB

•Dynamic schemas (“schema-free”)

• fit well with our extensibility requirements

•Document datastore

• easy to understand, visualize objects

• cmd shell, log files, debuggers, viewers

Schema Flexibility Comparison

•Relational vs. document-based

•Support extensible ‘person’ object

Person Id User Defined 1 User Defined 2 User Defined 3 User Defined 4 ...

1 Good Burger 3/20/1998 3/31/2010 Flipper

1 Visibiz 4/1/2010 <null> Tech Lead

2 10gen 7/9/2006 3/18/2009 Engineer

Column Name Type

User Defined 1 Company String

User Defined 2 Begin Date Date

User Defined 3 End Date Date

User Defined 4 Job Title String

Person Id Name Address
Date of
Birth

1 Mike Brocious Malvern, PA 6/10/1984

2 Doug Smith Philadelphia, PA 2/24/1980

Relational Database Example

Document Datastore Example
{
 "_id" : ObjectId("4d87a4d32739a23b3c834b67"),
 "name" : "Mike Brocious",
 "address" : "Malvern, PA",
 "dateOfBirth" : "Sun Jun 10 1984 00:00:00 GMT-0400 (EDT)",
 "employmentHistory" : [
 {
 "company" : "Good Burger",
 "beginDate" : "Sun Mar 20 1998 00:00:00 GMT-0400 (EDT)",
 "endDate" : "Thu Mar 31 2010 00:00:00 GMT-0400 (EDT)",
 "jobTitle" : "Flipper"
 },
 {
 "company" : "Visibiz",
 "beginDate" : "Fri Apr 01 2010 00:00:00 GMT-0400 (EDT)",
 "jobTitle" : "Engineer"
 }
]
}

Document Datastore Example
{
 "_id" : ObjectId("4d87a4d32739a23b3c834b67"),
 "name" : "Mike Brocious",
 "address" : "Malvern, PA",
 "dateOfBirth" : "Sun Jun 10 1984 00:00:00 GMT-0400 (EDT)",
 "employmentHistory" : [
 {
 "company" : "Good Burger",
 "beginDate" : "Sun Mar 20 1998 00:00:00 GMT-0400 (EDT)",
 "endDate" : "Thu Mar 31 2010 00:00:00 GMT-0400 (EDT)",
 "jobTitle" : "Flipper"
 },
 {
 "company" : "Visibiz",
 "beginDate" : "Fri Apr 01 2010 00:00:00 GMT-0400 (EDT)",
 "jobTitle" : "Engineer"
 }
]
}

{
 "_id": ObjectId("4d87a9732739a23b3c834b6d"),
 "name": "Julie Harper",
 "address": "Ocean City, NJ",
 "dateOfBirth": "Thu Sep 22 1994 00:00:00 GMT-0400 (EDT)",
 "gender": "F",
 "hobbies": [
 "painting",
 "skateboarding",
 "reading",
 "cooking"
]
}

More MongoDB Goodness

More MongoDB Goodness

•Scalability

• replication - easy to setup

• sharding

More MongoDB Goodness

•Scalability

• replication - easy to setup

• sharding

•Uses JSON

• “the new XML”

• easy to build, parse and read

• great support from tools, languages and services

JSON

• JSON * (MongoDB + Groovy + Grails + JavaScript) == LOVE

•MongoDB == BSON/JSON

•Groovy == Map

•Grails == JSON converter/builder

• JavaScript = Well...it’s the JS in JSON

JSON-eze

• Every layer of the application understands common format

•Not forced into transforming data

•DB result sets <--> DO/DTO

•DO/DTO <--> view

• view <--> presentation

• Enables rapid development
Data Access

DB

Services

Controller

View

Presentation

J
S
O
N

What Else We Liked About MongoDB

•Active product development

• Community support

• plugins, drivers, viewers

•10gen support

• developers, CEO very active on forum, JIRA

•MongoDB conferences, webcasts

•Deep list of sites already using MongoDB

Be Aware Of...

•No transactions

•mitigation: schema design + atomic document updates

•No really complex queries (JOINs, nested SELECTs)

•mitigation: schema design

• Felt we could minimize the impact

•OK, so that’s WHY

• Let’s get into the HOW

Application
Layers Browser

Controller

Application Svcs (bus. logic)

MongoService Morphia

MongoDB Java driver

MongoDB

Home-grown
convenience wrapper
around Java driver

Lightweight object-
mapping library

Our Primary Collections

•Things

•Rels

Things

•Our main collection: “things”

•Domain objects (person, company, note, event, etc.)

• Customer-defined objects

•Takes advantage of ‘schema-free’ nature of MongoDB

• able to easily query across all types

{ "_id" : ObjectId("4d10f60f39fe153be3316478"),
 "thingType" : "person",
 "name" : {
 "firstName" : "Gail",
 "lastName" : "Staudt"
 },
 "owner" : ObjectId("4d10f47e39fe153b552e6478"),
 "createdDate" : "Tue Dec 21 2010 13:46:39 GMT-0500 (EST)",
 "tags" : [
 {
 "tag" : "java",
 "score" : 2
 },
 {
 "tag" : "clojure",
 "score" : 2
 }
],
 "addresses" : [
 {
 "addr1" : "40 Lloyd Ave",
 "city" : "Malvern",
 "state" : "PA"
 }
],
 "emailAddresses" : [
 {
 "type" : "work",
 "value" : "staudt@foo.com"
 }
]
}

‘Person’ Thing

mailto:staudt@foo.com
mailto:staudt@foo.com

{
 "_id" : ObjectId("4d10ffe939fe153b193b6478"),
 "thingType" : "company",
 "name" : "We Be Coders, Inc."
 "owner" : ObjectId("4d10f60e39fe153b20316478"),
 "createdDate" : "Tue Dec 21 2010 14:28:41 GMT-0500 (EST)",
 "primaryBusiness" : "Software development consulting"
 "tags" : [
 {
 "tag" : "software",
 "score" : 2
 },
 {
 "tag" : "development",
 "score" : 7
 },
 {
 "tag" : "clojure",
 "score" : 3
 },
 {
 "tag" : "java",
 "score" : 5
 }
]
}

‘Company’ Thing

{
 "_id" : ObjectId("4d10ffe939fe153b193b6478"),
 "thingType" : "company",
 "name" : "We Be Coders, Inc."
 "owner" : ObjectId("4d10f60e39fe153b20316478"),
 "createdDate" : "Tue Dec 21 2010 14:28:41 GMT-0500 (EST)",
 "primaryBusiness" : "Software development consulting"
 "tags" : [
 {
 "tag" : "software",
 "score" : 2
 },
 {
 "tag" : "development",
 "score" : 7
 },
 {
 "tag" : "clojure",
 "score" : 3
 },
 {
 "tag" : "java",
 "score" : 5
 }
]
}

> db.things.find({owner: ObjectId(“4d10f60e39fe153b20316478”),
 tags.tag: “java”})

• Find all things I own tagged with ‘java’

‘Company’ Thing

Relationships - Act One

• Connections between things

• employment history

• co-workers, friends

Relationships - Act One

• Connections between things

• employment history

• co-workers, friends

• First cut: separate documents in the things collection

• essentially a mapping/join table

A Brel

Relationships - Act One

A Brel

•Single atomic insert (good! no transaction concerns)

•Made retrieval inefficient (no JOINs, nested SELECTs)

Relationships - Act One

Relationships - Act One

me = ObjectId(“4d10f60e39fe153b20316478”)

// Get all the relationships I’m involved in
related = db.things.find({$or: [left.id: me,
 right.id:me]})

// Build up a list of ids I’m related to
i = 0
relatedId = new Array()
for(relationship in related)

if (relationship.left.id == me) {
 relatedIds[i++] = relationship.right.id
} else {
 relatedIds[i++] = relationship.left.id
}

)

// Now get the things
relatedThings = db.things.find({_id: { $in : relatedIds } })

Find all things I’m related to

Relationships - Act Two

•Moved relationships to nested document inside thing

•natural approach for document-based datastores

A B

Relationships - Act Two

•Queries easy and fast - awesome!
// Get all the things I’m related to
relatedThings = db.things.find({$or: [rels.left.id: me,
 rels.right.id:me]})

Relationships - Act Two

•Two updates required to insert new relationship

• relationship stored in both things

• bad! - transaction concerns

•Queries easy and fast - awesome!
// Get all the things I’m related to
relatedThings = db.things.find({$or: [rels.left.id: me,
 rels.right.id:me]})

Relationships - Act Three (final?)
•Best of both worlds

Relationships - Act Three (final?)
•Best of both worlds

• Separate “rels” collection

•master source of relationship details

• atomic insert (good!)

• unique index (good!)

A rel B

Relationships - Act Three (final?)
•Best of both worlds

• Separate “rels” collection

•master source of relationship details

• atomic insert (good!)

• unique index (good!)

•Nested “rels” documents in things

• easy, fast queries (good!)

A rel B

A B

Relationships - Act Three (final?)
•Best of both worlds

• Separate “rels” collection

•master source of relationship details

• atomic insert (good!)

• unique index (good!)

•Nested “rels” documents in things

• easy, fast queries (good!)

A rel B

A B

insert / delete

Relationships - Act Three (final?)
•Best of both worlds

• Separate “rels” collection

•master source of relationship details

• atomic insert (good!)

• unique index (good!)

•Nested “rels” documents in things

• easy, fast queries (good!)

A rel B

A B

insert / delete

Other MongoDB Collections

•Workflow status log

•Query log

•Staging area for imported data

•Users

•Duplicates scan log

REST

•RESTful interface on top of services

• Expose services for internal and
external development (API)

REST

•RESTful interface on top of services

• Expose services for internal and
external development (API)

•MongoDB doesn’t enforce datatypes, object shape

•Need a way to validate data to prevent “garbage in”

• JSON schema

•http://json-schema.org/

http://json-schema.org/
http://json-schema.org/

Person Schema person = [
 name: "person",
 type: "object",
 extends: "contact",

 properties: [
 name: [type: "object",
 title: "Name",
 properties: [
 firstName: [type: "string",
 title: "First Name",
 optional:true],
 middleName: [type: "string",
 title: "Middle Name",
 optional: true],
 lastName: [type: "string",
 title: "Last Name",
 optional: true],
 suffix: [type: "string",
 title: "Suffix",
 optional: true]]]]]

Thing Schemas

•Separate “schemas” MongoDB collection

• Every “thing” passes through validation before being stored

•Uses:

• validate incoming data

• track customer-specific schema extensions

• generate UI to display things

Summary

•Why MongoDB works for us

•Schema-free

•Document-oriented

• JSON

•Scalable

•Active product

• Free

Questions?

