
Programming Style

& Your Brain

Section 8

Programming Style

&
Your Brain

Douglas Crockford

Yahoo!

Head.
Gut.

Two Systems.

Visual Processing.

An analogy.

Advertising.

Tobacco.

Computer Programs.

The most complicated things
people make.

Artificial Intelligence.

Programming Language.

Perfection.

Hunters and Gatherers.

Programming uses
Head and Gut.

Tradeoffs.

JavaScript.

Good Parts.

Bad Parts.

JSLint.

JSLint defines a professional
subset of JavaScript.

http://www.JSLint.com/

WARNING!
JSLint will hurt your

feelings.

Left or Right?

block

{

}

block {

}

Left or Right?

block

{

}

• Be consistent.

block {

}

• Everyone should do it
like I do.

Left or Right?

return

{

 ok: false

};

• SILENT ERROR!

return {

 ok: true

};

• Works well in
JavaScript.

Prefer forms that are error
resistant.

switch statement.

The fallthrough hazard.

“That hardly ever happens”

is another way of saying
“It happens”.

A good style can help produce
better programs.

Style is should not be about
personal preference and self-

expression.

THEROMANSWROTELATIN
ALLINUPPERCASEWITH

NOWORDBREAKS
ORPUNCTUATION

Medieval copyists introduced
lowercase, word breaks, and

punctuation.

These innovations helped reduce
the error rate.

Good use of style can help
reduce the occurrence of

errors.

The Elements of Style
William Strunk

http://www.crockford.com/wrrrld/style.html

Programs must communicate
clearly to people.

Use elements of good
composition where applicable.

For example, use a space after a
comma, not before.

Use spaces to disambiguate parens.

• No space before (when used to invoke a function.

• No space between a function name and a
parameter list.

• One space between all other names and (.

• Wrong:

 foo (bar);

 return(a+b);

 if(a=== 0) {…}

 function foo (b) {…}

 function(x) {…}

Immediately Invocable Function
Expressions

function () {

 ...

}(); // Syntax error!

Immediately Invocable Function
Expressions

(function () {

 ...

})();

Immediately Invocable Function
Expressions

(function () {

 ...

})();

Dog balls

Immediately Invocable Function
Expressions

(function () {

 ...

}()); // Neatness counts.

The Heartbreak of Automatic
Semicolon Insertion

x = y // <-- Missing semicolon

(function () {

 ...

}());

• Never rely on automatic semicolon insertion!

with statement.

with (o) {

 foo = koda;

}

 o.foo = koda;

 o.foo = o.koda;

 foo = koda;

 foo = o.koda;

with statement.

with (o) {

 foo = koda;

}

 o.foo = koda;

 o.foo = o.koda;

 foo = koda;

 foo = o.koda;

I am not saying that it isn’t useful.
I am saying that there is never a case

where it isn’t confusing.

Confusion must be avoided.

Transitivity? What's That?

0 == '' // true

0 == '0' // true

'' == '0' // false

false == 'false' // false

false == '0' // true

" \t\r\n " == 0 // true

Always use ===, never ==.

If there is a feature of a
language that is sometimes
problematic, and if it can be

replaced with another feature
that is more reliable, then

always use the more reliable
feature.

Multiline string literals

 var long_line_1 = "This is a \

long line"; // ok

 var long_line_2 = "This is a \

long line"; // syntax error

Avoid forms that are difficult
to distinguish from common

errors.

“That was intentional.”

“I know what I’m doing.”

 if (a = b) {…}

 a = b;

if (a) {…}

 if (a === b) {…}

Make your programs look like
what they do.

Scope.

Block scope v function scope.

var statement.

• It gets split into two parts:

 The declaration part gets hoisted to the top of the function,
initializing with undefined.

 The initialization part turns into an ordinary assignment. So

 function foo() {

 ...

 var myVar = 0, myOtherVar;

• Expands into

 function foo() {

 var myVar = undefined,

 myOtherVar = undefined;

 ...

 myVar = 0;

Declare all variables at the top
of the function.

Declare all functions before

you call them.

for (var i …) {…}

Variable i is not scoped to the loop.

Write in the language
you are writing in.

Let there be let.

Global variables.

• Global variables are evil.

• Avoid global variables.

• When using global variables, be explicit.

UPPER_CASE

• Global variables should be as rare as hens
teeth and stick out like a sore thumb.

new prefix

Forgetting new causes a

constructor to clobber global
variables without warning.

Fixed in ES5/strict.

Constructor functions should
be named with InitialCaps.

Nothing else should be named with
InitialCaps.

var a = b = 0;

var a = 0, b = 0;

b = 0;

var a = b;

Write in a way that clearly
communicates your intent.

++

++

x += 1

++

x += 1

x++

++

x += 1

x++

++x

++x;
++x;

x += 2;

For no cost, by adopting a
more rigorous style, many

classes of errors can be
automatically avoided.

if (a) b(); c();

if (a) b(); c();

if (a) {b(); c();}

if (a) {b();} c();

As our processes become more
agile, our coding must be more

resilient.

Programming is the most complicated
thing that humans do.

Computer programs must be perfect.

Humans are not good at perfect.

Designing a programming style
demands discipline.

It is not selecting features because
they are liked, or pretty, or

familiar.

The Abyss

The JSLint style was driven by
the need to automatically

detect defects.

Forms that can hide defects are
considered defective.

Language Subsetting.

Only a madman would use all of C++.

There will be bugs.

Do what you can to move the odds
to your favor.

Good style is good for your gut.

Thank you and good night.

