

Douglas Crockford

Yahoo!

Principles
Security

of

White hats vs. black hats.

Security is not hats.

Security is everyone’s job.

Don’t leave it to specialists.

Things Change

It is not unusual for the purpose or use or
scope of software to change over its life.

Rarely are the security properties of
software systems reexamined in the
context of new or evolving missions.

This leads to insecure systems.

 Don’t nobody do nothing
stupid and nobody gets hurt.

And this means you.

Principles

Not trix and hax.

Deterrence is not effective.

You can’t punish an invisible
attacker.

Johann
Martin

Schleyer

Volapük
1880

Debabelization

Jean
Guillaume
Auguste
Victor

François
Hubert

Kerckhoffs

Rebabelization

A secret vice.

Auguste
Kerckhoffs

La

Cryptographie
Militaire

1883

The design of a system should
not require secrecy; and

compromise of the system
should not inconvenience the

correspondents.

The Kerckhoffs Principle

Alice Bob

Plain
text Encrypt

Key

Cypher
text

Decrypt

Key

Cypher
text

Plain
text

There is no security in
obscurity.

The more secrets you have,
the harder they are to keep.

One Time Pad

Truly unbreakable.

One Time Pad

• The key must always remain secret.

• The key must be at least as long as the
plain text.

• The cypher text is obtained by xor of the
plain text and the key.

Plain text

Key

Cypher text

One Time Pad

• The key must always remain secret.

• The key must be at least as long as the
plain text.

• The cypher text is obtained by xor of the
plain text and the key.

• The key must be perfectly random.

Weak key

Weak cypher text

One Time Pad

• The key must always remain secret.

• The key must be at least as long as the
plain text.

• The cypher text is obtained by xor of the
plain text and the key.

• The key must be perfectly random.

• A key must never be used more than once.

Plain text

Reuse key

Cypher text

Cypher text xor cypher text

Cryptography is not security.

Alice Bob

Alice Bob Eve

Alice Bob Mallory

Alice Satan

Security must be factored
into every decision.

“We’ll go back and
make it secure later.”

You can’t add security,
just as you can’t add reliability.

Insecurity and unreliability
must be removed.

Having survived to this point
does not guarantee future

survival.

The Impossible is not Possible.

If a measure is not effective,
it is ineffective.

Don’t prohibit what
you can’t prevent.

Exploit what you cannot prevent.

False security is worse
than no security.

Unnecessary expense
and confusion of risk.

The Browser Platform

• Horribly insecure.

• Still “fixing it later.”

• HTML5 made it worse instead of better.

• It is still better than everything else.

Blame the victim.

Who’s interest does the
program represent?

The browser got this right.
Every other platform for this wrong.

What the web got wrong

• There can be more interests involved than
the user’s and the site’s.

• A malicious party can exploit coding
conventions to inject malicious code.

• That malicious code gets all of the rights of
the site.

• This is known as the XSS problem.

What can an attacker do if he
gets some script into your

page?

An attacker can request
additional scripts from any server

in the world.

Once it gets a foothold, it can
obtain all of the scripts it needs.

An attacker can read the
document.

The attacker can see everything
the user sees.

An attacker can make requests
of your server.

Your server cannot detect that the
request did not originate with your

application.

If your server accepts SQL
queries, then the attacker gets

access to your database.

An attacker has control over the
display and can request

information from the user.

The user cannot detect that the
request did not originate with your

application.

An attacker can send information
to servers anywhere in the world.

The browser does not prevent
any of these.

Web standards require these
weaknesses.

The consequences of a successful
attack are horrible.

Harm to customers.

Loss of trust.

Legal liabilities.

Cross Site Scripting

Cross site scripting attacks
were invented in 1995.

We have made no progress on the
fundamental problems since then.

A mashup is a self-inflicted
XSS attack.

Advertising is a mashup.

The most reliable, cost effective method
to inject evil code is to buy an ad.

Why is there XSS?

• The web stack is too complicated.

Too many languages, each with its own
encoding, quoting, commenting, and
escapement conventions.

Each can be nested inside of each other.

Browsers do heroic things to make sense of
malformed content.

• Template-based web frameworks are
optimized for XSS injection.

Why is there XSS?

• The JavaScript global object gives every
scrap of script the same set of powerful
capabilities.

• As bad as it is at security, the browser is a
vast improvement over everything else.

Confusion of Interests

The browser distinguishes between
the interests of the user and the

interests of the site.

It did not anticipate that multiple
interests might be represented.

Within a page,
interests are confused.

An ad or a widget or an Ajax
library gets the same rights as the

site’s own scripts.

JavaScript got close
to getting it right.

It can be repaired, becoming an
object capability language.

HTML

• HTML grants power to confusers.

• HTML is easily confused.

• HTML is forgiving because webmasters
were/are incompetent.

• HTML’s API, the DOM, is also insecure.

This stuff is not going
to get fixed in a hurry.

It is up to the web developer to
create secure applications on an

insecure platform.

But there is hope…

Any unit of software should be
given just the capabilities it
needs to do its work, and no

more.

The Principle of Least Authority

The Actor Model

1973

The Actor Model

• An actor is a computational entity.

• An actor can send messages to other actors
only if it knows their addresses.

• An actor can create new actors.

• An actor can receive messages.

• Web workers are actors.

• Web services are not…

Waterken applies the actor
model to web services.

Distributed, reliable services.
http://www.waterken.com/

Capability

An address of an actor is a capability.

A reference to an object is a capability.

An Introduction to
Object Capabilities

A is an Object.

Object A has
state and
behavior.

A

Object A has a
reference to

Object B.

A

B

An object can have
references to other

objects.

has-a

...because it has
a reference to

Object B.

Object A can
communicate

with Object B...

A

B

Object B
provides an

interface that
constrains access
to its own state
and references.

A

B

Object A does not get access
to Object B’s innards.

Object A does not have a reference to
Object C, so Object A cannot
communicate with Object C.

A

B
In an Object Capability
System, an object can

only communicate with
objects that it has

references to.
C

An Object Capability System is
produced by constraining the

ways that references are obtained.

A reference cannot be obtained
simply by knowing the name of a
global variable or a public class.

There are exactly three ways to
obtain a reference.

1. By Creation.

2. By Construction.

3. By Introduction.

1. By Creation

If a function creates an object,
it gets a reference to that object.

2. By Construction

An object may be endowed by its constructor
with references.

This can include references in the constructor’s
context and inherited references.

3. By Introduction

A

BC

A has a references to B and C.
B has no references, so it cannot communicate with A or C.
C has no references, so it cannot communicate with A or B.

3. By Introduction

A

BC

A calls B, passing a reference to C.

3. By Introduction

A

BC

B is now able to communicate with C.

It has acquired the capability.

If references can only be obtained
by Creation, Construction, or

Introduction, then you may have a
safe system.

Potential weaknesses include

1. Arrogation.

2. Corruption.

3. Confusion.

4. Collusion.

1. Arrogation

• To take or claim for oneself without right.

• Global variables.

• public static variables.

• Standard libraries that grant powerful
capabilities like access to the file system or
the network or the operating system to all
programs.

• Address generation.

• Known urls.

2. Corruption

It should not be possible to tamper
with or circumvent the system or

other objects.

3. Confusion

It should be possible to create
objects that are not subject to

confusion. A confused object can
be tricked into misusing its

capabilities.

4. Collusion

• It must not be possible for two objects to
communicate until they are introduced.

• If two independent objects can collude,
they might be able to pool their capabilities
to cause harm.

Rights Attenuation

• Some capabilities are too dangerous to give
to guest code.

• We can instead give those capabilities to
intermediate objects that will constrain the
power.

• For example, an intermediate object for a
file system might limit access to a
particular device or directory, or limit the
size of files, or the number of files, or the
longevity of files, or the types of files.

Ultimately, every object should be
given exactly the capabilities it

needs to do its work.

Capabilities should be granted on a
need-to-do basis.

Information Hiding - Capability Hiding.

Intermediate objects, or facets,
can be very light weight.

Class-free languages can be
especially effective.

Guest

PowerfulFacet

The Facet object
limits the Guest

object’s access to the
Powerful object.

The Guest object
cannot tamper with
the Facet to get a

direct reference to
the Dangerous

object.

References are not revocable.

Once you introduce an object, you
can’t ask it to forget it.

You can ask, but you should not
depend on your request being

honored.

Guest

Powerful

Agency

The Guest object has a
reference to an Agency
object. The Guest asks
for an introduction to
the Powerful object.

Guest

PowerfulFacet

Agency

The Agency object makes a Facet,
and gives it to the Guest.

The Facet might be a simple pass through.

Guest

PowerfulFacet

Agency

When the Agency wants to revoke the
capability, it tells the Facet to forget

its capability.

The Facet is now useless to the Guest.

Guest

PowerfulFacet

A Facet can mark requests so that the
Powerful object can know where the

request came from.

Facets

• Very expressive.

• Easy to construct.

• Lightweight.

• Attenuation: Power Reduction.

• Revocation.

• Notification.

• Delegation.

• The best OO patterns are also capability patterns

Attenuation is your friend

• Facets can reduce the power of dangerous
objects.

• Most code should not be given direct
access to innerHTML or document.write.

• Instead of trying to guess if a piece of code
can do something bad, give it safe
capabilities instead.

• Capabilities can aid in API design.

Function the Ultimate

The Lazy Programmer’s Guide
to Secure Computing

Marc Stiegler

http://www.youtube.com/watch?
v=eL5o4PFuxTY

var table = (function () {

var array = [];

return {

get: function (i) {return array[i]; },

store: function (i, v) {array[i] = v; },

append: function (v) {array.push(v); }

};

}());

var table = (function () {

var array = [];

return {

get: function (i) {return array[i]; },

store: function (i, v) {array[i] = v; },

append: function (v) {array.push(v); }

};

}());

var score;

table.store('push', function () {

 score = this;

});

table.append();

Confusion

Confusion aids the enemy.

Bugs are a manifestation of
confusion.

With great complexity
comes great confusion.

Keep it simple. Keep it clean.

Code Well

• Good code is ultimately cheaper to produce
than bad code, so might as well always
write good code.

• Good code is easier to reason about.

• Code that is difficult to reason about is
more likely to be problematic.

• Strict conformance to good style rules.

• http://www.JSLint.com/

Never trust a machine that is
not under your absolute

control.

Don’t get more intimate that
sharing JSON payloads.

Never trust the browser

• It cannot and will not protect your
interests.

• Properly filter and validate all input.

• Properly encode all output.

• Context is everything.

• Filter and encode for the correct context.

Templating and
Temporary Insanity

A Simple Attack

http://yoursite.com/<script>...</script>

<html><body>

<p>404 File not found:

<script>...</script>

</p></body></html>

• The script runs with the authority of your site.

• The script gets cookies, local storage, everything.

Confusion and Concatenation

Properly encode all of the
non-literal pieces.

A simple attack

• Bad encoding

'{"json": "' + xss + '"}'

• Bad text

xss = '" + alert("XSS") + "'

• Good encoding

JSON.stringify({json: xss})

“Why would anyone do that?”

No leakage

• Do not allow arrogation.

• Everything must be solid. If anything leaks
capabilities, all may be compromised.

• If a user has rooted their identity in one of
our accounts, and if we leak, the
consequences can be tragic.

Inconvenience is not security.

Identity is not security.

Taint ain’t security.

Intrusion detection is not
security.

Mismanagement

Danog ols e neit gudik.

Danog ols e neit gudik.

Thank you and good night.

• Security is everyone’s job.

• Don’t nobody do nothing
stupid and nobody gets hurt.

• Deterrence is not effective.

• The design of a system should
not require secrecy; and
compromise of the system
should not inconvenience the
correspondents.

• There is no security in
obscurity.

• Cryptography is not security.

• Security must be factored
into every decision.

• You can’t add security,
just as you can’t add
reliability.

• The Impossible is not Possible.

• False security is worse
than no security.

• Any unit of software should be
given just the capabilities it
needs to do its work, and no
more.

• Confusion aids the enemy.

• Never trust a machine that is
not under your absolute control.

• Inconvenience is not secuirty.

• Identity is not security.

• Taint ain’t security.

• Intrusion detection is not
security.

• Security is everyone’s job.

