
Effective use of FindBugs in large
software development efforts

William Pugh
@wpugh

Code has bugs

• no perfect correctness or security

• you shouldn’t try to fix everything that is wrong with
your code

• engineering effort is limited and zero sum

• how can you get the best return on the investment of
engineering time using FindBugs

Defective Java Code
Learning from mistakes

• I’m the lead on FindBugs

• static analysis tool for defect detection

• more than a million downloads

• Spent a lot of time at Google

• Found thousands of errors

• not style issues, honest to god coding mistakes

• but mistakes found weren’t causing problems in
production

• 4,000 issues to review

• Bug patterns most relevant to
Google

• 8,000 reviews

• 81+% must/should fix

• many issues independently
reviewed by multiple engineers

> 1,800 bugs filed
> more than 600 fixed

> More than 1,500 issues
removed in several days

FindBugs fixit @ Google
May 2009

Learned wisdom

• Static analysis typically finds mistakes (often just inconsistencies)

• but some mistakes don’t matter

• need to find the intersection of stupid and important

• The bug that matter depend on context

• Static analysis, at best, might catch 5-10% of your software quality
problems

• 80+% for certain specific defects

• but overall, not a magic bullet

• Used effectively, static analysis is cheaper than other techniques for
catching the same bugs

Law of 2 feet

• Something I picked up from attending an unconference

• If you find yourself at a presentation where you aren’t
getting anything

• leave

• and find a conversation you can gain from or
contribute to.

Some bugs

What is wrong?
Eclipse 3.7
org.eclipse.update.internal.ui.views.FeaturesStateAction
 public void run() {
 try {
 if ((adapters == null) && (adapters.length == 0))
 return;
 IStatus status
 = OperationsManager
 .getValidator()
 .validatePlatformConfigValid();
 if (status != null)
 throw new CoreException(status);
 ...

What is wrong?

• Definitely no test cases for when adapters is null

• Probably no test cases for when adapters is empty

• Need to replace
(adapters == null) && (adapters.length == 0)
with
(adapters == null) || (adapters.length == 0)

• If code has been in production, likely that adapters is
never null in practice

10

A quick Java Puzzler
“The Joy of Sets”

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i - 1);

 }

 System.out.println(s.size());

 }

}

11

What Does It Print?

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i - 1);

 }

 System.out.println(s.size());

 }

}

(a) 1

(b) 100

(c) Throws exception

(d) None of the above

12

What Does It Print?

(a) 1

(b) 100

(c) Throws exception

(d) None of the above

The set contains Short values, but we’re
removing Integer values

13

Another Look
public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i – 1); // int-valued expression

 }

 System.out.println(s.size());

 }

}

14

Another ‘nother Look
public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for (short i = 0; i < 100; i++) {

 s.add(i);

 s.remove(i – 1); // int-valued expression

 }

 System.out.println(s.size());

 }

}

public interface Set<E>extends Collection<E> {

 public abstract boolean add(E e);

 public abstract boolean remove(Object o);

 ...

}

15

How Do You Fix It?

public class ShortSet {

 public static void main(String args[]) {

 Set<Short> s = new HashSet<Short>();

 for(short i = 0; i < 100; i++) {

 s.add(i);

 s.remove((short) (i – 1));

 }

 System.out.println(s.size());

 }

}

16

Moral

•Collection<E>.remove takes Object, not E

•Also Collection.contains, Map.get

• Integral arithmetic always results in int or long

•Avoid mixing types

•Avoid short; prefer int and long

•Arrays of short are the only compelling use case

Mismatched types

• Lots of places where you can pass in an object of the wrong
type, and nothing happens

• comparing incompatible objects with equals

Map interface

public interface Map<K,V> {

V put(K key, V value);

V get(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

V remove(Object key);

...

}

Map interface is mostly untyped

• It is type safe to pass any object to
these methods

• type parameter ignored

• If it is an incompatible type, the
call will do nothing

• It had to be this way for backwards
compatibility

• I’m getting to hate backwards
compatibility

Comparing objects of different types

•Code that compares an instance of Foo with a String for
equality

• almost always wrong

•might be OK if Foo.equals checks for a String being passed as
an argument

• Foo shouldn’t do this: break symmetry, and confusing as hell

FindBugs demo

FindBugs web start

• Go to http://findbugs.sourceforge.net/findbugs2.html

• Click on one of the links for communal reviews of
FindBugs issues

http://findbugs.sourceforge.net/findbugs2.html
http://findbugs.sourceforge.net/findbugs2.html

Effective use of a static
analysis tool

• Tune it to report only the kinds of issues you care
about

• Run it automatically, alerting you when new serious
issues are found

• Deal with issues where you don’t want to change the
code

• Figure out how to deal to legacy bugs: broken code
that has been in the codebase for a long time

What bugs matter to you?

• If you have a public static final field pointing to an array

• anyone can change the contains of the array

• A big concern if you are concerned about untrusted
code running in the same VM

• a minor concern otherwise

• Are you concerned about internationalization,
character encodings, etc?

• lots of issues here, only matters in some applications

Compiler warnings

• compiler warnings are a similar issue

• At Google, they’ve spent some time thinking about the
compiler warnings they care about

• Try to fix the ones they care about, globally disable the
ones they don’t care about

Running it automatically

• Most changes don’t introduce serious new issues
detected by FindBugs (probably less than 2%)

• You don’t want developers to have to think about
running it, or be blocked while it is running

• their time and focus is too valuable; too little return

• But, some of the mistakes caught will cause developers
to go on a frustrating hours long debugging hunt

How?

• Need better IDE integration

• we’ve got some work to do here

• Need a way to know which issues are new and scary

• Run at unit test time, or at continuous build time

• ... need to write a shim for launching it from a unit
test...

Dealing with issues where you
don’t want to change the code
• FindBugs is very accurate, certainly compared to many

other tools

• For rank 1-12 issues, Google engineers said they
were “should fix” 81% of the time

• But sometimes, the warning doesn’t inspire you to
want to change the code

•We have 55 such issues in the FindBugs code base

• only 10 of them at rank 1-18

Dealing with “not a bug”

• Put an annotation in the source code

• Careful: annotations can suppress future issues that
shouldn’t be suppressed

• In many circumstances, resistance to changing source
code to suppress issues

• Store issues and evaluations in a central database

• used by every major commercial static analysis tool

legacy bugs

• Understand whether the code is being executed now,
and whether the buggy behavior is occurring now

• code coverage from production?

• If the code isn’t being executed, consider just deleting
the code, or adding logging if it ever does get executed

• If you want to fix it, figure out the right behavior and
write a test case to document it

• then fix it

Maybe you shouldn’t fix all
old issues

• If a mistake was written into your code two years ago,
and it hasn’t caused any problems, maybe you shouldn’t
fix it.

• Probably no test cases, code may not be used or
understood

• Changing the code to silence the warning without
really understanding the code or having any test
cases is dangerous

• it just removes the WTF from the code.

Bug fix regressions

•Whenever you try to fix a bug, there is a chance that
you will won’t do so correctly

• might make things worse, or only partially fix the
problem

• Estimates of incomplete/bad bug fixes range from
5-30%

Important concepts in
FindBugs

•Ways to run FindBugs

• Bug attributes:

• confidence, rank, category, kind, pattern

•Ways to filter and rank bugs

• Baseline bugs

• Bug clouds

• plugins

Running FindBugs

•Works on JVM classfiles

• Some detectors produce poor results for some non-
Java languages, such as Scala

• Runs on command line, ant, maven, Eclipse, Netbeans,
IntelliJ, Jenkins, sonar, Fortify, Coverity

Bug attributes

• Each bug is an instance of a pattern

• patterns are groups by category (e.g.,
internationalization) and kind (e.g., null pointer
dereference)

• Each instance has a confidence (low, medium high)

• priority in previous versions of FindBugs, but this
confused people because priorities weren’t
comparable between different bug patterns

BugRank

• Each instance has a rank 1-20, with 1 being scariest

• Scariest: rank 1-4

• Scary: rank 5-9

• troubling: rank 10-14

• of concern: rank 15-20

• Scariest are issues most likely to cause significant and
stealthy changes in behavior

• roughly corresponds to the OMG level

Customizing bug rank

• Bug ranks can be and should be customized for
production deployments

• can create a plugin that contains a bugrank.txt file, and
add plugin to your deployement or project

Filtering Bugs

• You can filter bugs using either options to a command-
line or ant task, or via a filter file

• Filter files can involve more complicated logic,
including things such as “filter warnings of type X if
they involving invoking method Y”

• Filters can be put into a plugin

Baseline bugs

• Easy way to show just new bugs

• Filter a bug report, excluding issues that are already
present in another bug report

• Allows you to say: show me just the issues that weren’t
in the previous release

Comparing bugs across
versions

• FindBugs using techniques that use the bug pattern,
class, method, and other components of the issue to
identify when two different analysis reports contain the
same issue

• it is confused by refactorings such as class and
method renaming

Bug clouds

• Previously, we had provided a way for you to store
evaluations of issues in the XML used to store the
analysis results

• but it was very hard to share results among a team

•We now provide bug clouds, where we store
information about the first time an issue was seen, and
any evaluations of the issue

Which bug cloud?

•We provide a free bug cloud, hosted on Google app
engine, suitable for use on open source or other non-
confidential projects

• people have to sign in using open-id before anything is
stored there.

• You can set up your own bug cloud on your own servers

• At the moment, requires making some changes to the
distro and rebuilding, should soon be possible to
configure as separate plugin

Plugins

• FindBugs has had plugins for a long time, but we’ve
really added lots of features

• A plugin might just consist of some xml files specifying
various properties

• Plugins are loaded from the findbugs installation
directory and from a .findbugs directory in the user’s
home directory

• in both, looks in subdirections plugin and
optionalPlugin

Enabling plugins

• Plugins loaded from a plugin directory are enabled by
default

• those loaded from optionalPlugin are not

• You can set which plugins are enabled for a particular
project

Some privacy and
confidentiality issues

FindBugs update check

• FindBugs does an update check to see if there is a new
version of FindBugs

• doesn’t report anything about the code being analyzed

• but does report things like OS, Java version, locale,
invocation mechanism (Ant, Maven, command line,
GUI)

• You can install a plugin that completely blocks this
check, or write your own plugin that reroutes the check
to your own server

FindBugs communal cloud

•We are hosting a free server to record information
about bugs

• when the bug was first seen, and any evaluations of
the issue by developers.

• e.g., “On Jan 11th, Sam marked this as a “Should
Fix” issue and said “....”

• Appropriate for open source and other non-
confidential source code

FindBugs communal cloud
privacy

• Source code is never uploaded

• You have to select the “FindBugs Communal Cloud”,
and log in with an open-id account, before anything is
uploaded into the cloud

• You can remove the FindBugs communal cloud from
your configuration if you are concerned

Defect density

• For Eclipse 3.0 (fairly typical)

• Scariest: 30 per million

• Scary: 160 per million LOC

• Troubling: 480 per million LOC

• Of concern: 6000 per million LOC

Understand your risk/bug
environment

•What are the expensive risks?

• Is it OK to just pop up an error message for one web
request or GUI event?

• how do you ensure you don't show the fail whale to
everyone?

• Could a failure destroy equipment, leak or loose
sensitive/valuable data, kill people?

mistakes charactertistics

•Will you know quickly if it manifests itself?

•What techniques are good for finding it?

• Is unit testing effective?

• Might a change in circumstances cause it to start
manifesting itself?

•What is the cost of it manifesting itself?

• If is does manifest itself, will it come on slowly or in a
tidal wave

Bugs in Google's code

• Google's code base contains thousands of "serious" errors

• code that could never function in the way the developer
intended

• If noticed during code review, would definitely have been fixed

• Most of the issues found by looking at Google's entire codebase
have been there for months or years

• despite efforts, unable to find any causing noticeable problems in
production

As issues/bugs age

• go up:

• cost of understanding potential issues, deciding if they
are bugs

• cost and risk of changing code to remedy bugs

• goes down:

• chance that bug will manifest itself as misbehavior

More efficient to look at
issues early

• be prepared for disappointment when you look at old
issues

• may not find many serious issues

• don't be too eager to "fix" all the old issues

Where bugs live

• code that is never tested

• If code isn't unit or system tested, it probably doesn't
work

• throw new UnsupportedOperationException() is
vastly underrated

• if your current functionality doesn't need an equals
method, and you don't want to write unit tests for it, make
it throw UnsupportedOperationException

• Particularly an issue when you implement an interface with
12 methods, and your current use case only needs 2

Improving software
quality

Improving software quality

• Many different things can catch mistakes and/or
improve software quality

• Each technique more efficient at finding some
mistakes than others

• Each subject to diminishing returns

• No magic bullet

• Find the right combination for you and for the
mistakes that matter to you

Test, test, test...

• Many times FindBugs will identify bugs

• that leave you thinking “Did anyone test this code?”

• And you find other mistakes in the same vicinity

• FindBugs might be more useful as an untested code detector than as a
bug detector

• Overall, testing is far more valuable than static analysis

• I’m agnostic on unit tests vs. system tests

• But no one writes code so good you don’t need to check that it does
the right thing

• I’ve learned this from personal painful experience

Dead code

• Many projects contain lots of dead code

• abandoned packages and classes

• classes that implement 12 methods; only 3 are used

• Code coverage is a very useful tool

• but pushing to very high code coverage may not be
worthwhile

• you’d have to cover lots of code that never gets
executed in production

Code coverage from
production

• If you can sample code coverage from production,
great

• look for code executed in production but not
covered in unit or system test

Cool idea

• If you can’t get code coverage from production

• Just get list of loaded classes

• just your code, ignoring classes loaded from core
classes or libraries

• Very light weight instrumentation

• Log the data

• could then ask queries such as “Which web services
loaded the FooBar class this month?”

Using FindBugs to find
mistakes

• FindBugs is accurate at finding coding mistakes

• 75+% evaluated as a mistake that should be fixed

• But many mistakes have low costs

• memory/type safety lowers cost of mistakes

• If applied to existing production code, many expensive
mistakes have already been removed

• perhaps painfully

• Need to lower cost of using FindBugs to sell to some
projects/teams

FindBugs integration at
Google

• FindBugs has been in use for years at Google

• Finally turned on as a presubmit check at Google

•When you want to commit a change, you need a code
review

• now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code
review

Questions?

