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For three distinct and complete achievements:

|. LCF, the mechanization of Scott's Logic of Computable

Functions, probably the first theoretically based yet practical tool
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction,
the study of the relationship between operational and
denotational semantics.
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Milner and me

® | ast ML postdoc at Edinburgh

* and one of the first Cambridge postdocs, with Peter Sewell

e Satisfied ML user Hﬁmﬁ@@m

® Pi-calculus type systems (with Davide Sangiorgi)

® Pict programming Ianguage (with David Turner) ‘
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ML, Haskell, Scheme, ... Pict

® | ocal type inference -» BScala

e POPLMark and Software Foundations
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The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %"~ which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these

results to richer languages; a type-checking algorithm based on # is in fact already
implemented and working, for the metalanguage ) the Edinburgh LCF system.,
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Polymorphism

Consider the list mapping function

letrec map(f, m) = if null (m) then nil

else cons ( f (hd(m)), map (f, ti(m)))
For example:

map(square, [1,2,3]) =[1.4.9]

A good type for map is:
(e — B) X o list) — B list




Roots of Polymorphism

e [heory: Girard, Reynolds, Plot

® Practice: Morris, Liskov, Bursta

e | anguages: CLU, Euclid, Simula,

Hope, ...
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|, MacQueen, ...
Alphard,
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Type inference

It is remarkably conven-
ient in interactive programming to be relieved of
the need to specify types, with assurance that
badly-typed phrases will be caught, reported, and
not evaluated.

A Metalanguage for interactive proof in LCF
M. Gordon, R. Milner, L. Morris, M. Newey, C.Wadsworth
(POPL 1982)




letrec map(f, m) = if null (m) then nil

else cons ( f (hd(m)), map (f, tl(m)))

Gnull = Ty list — bool, Omap
Onil = Ty list, Onull
Ohg = T3 list — 74, Chd

o1 = 74 list — 7, list, Otl
Ocons = (75 X 7y list) — 74 list of
Omap
Ocons
P1
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ot X Om —> Py,
om — bool,
Om —> Py ,
Om — P3,

P2 = Py,

or X P3—> P55
Ps X P5 > Pg s
Onil = pPg -

‘l\oj'ofz){,\o(\: Omap — ('}/ —>> 8) X v list — o list
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Type Soundess

|. Give a denotational semantics assigning each
expression e a meaning [[e]] in some mathematical
domain of abstract computations

e ..including a special element wrong for expressions that fail
when evaluated

2. Show that if the type inference algorithm assigns a
type T to some expression e, then e has type T

3. Associate each type T with a set of expression
meanings [[T]]

4. Show that if expression e has type T, then [[e]] € [[T]]

well-type programs cannot ‘“go wrong”




Types and behavior

® some types describe structure:
{name: String, age: Int, email: String}

® others constrain the behavior of programs...
((x — B) X o list) —§ B list

e ..and their environments:
((o>‘ — B) X o list) — B list

type = contract between program and environment




Abstract types are behavioral invariants

The principal aims then in designing ML were

to make it impossible to prove non-theorems yet
easy to program strategies for performing proofs.

In ICF we give the user the freedam to write his own
tactics (in ML) but the type-checker ensures that
these cannot perform faulty proofs - at worst a
tactic can lead to an unwanted theorem (for example
which does not achieve the desired goal).




An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems
abstype thm with

ASSUME : formula » thm €& ASSUME f
. thm - thm constructs a proof of
GEN X w TRANS wl w2
constructs a proof of constructs a proof of
[+ vx.f [ +tl=t3
from a proof of I |- f from a proof wl of [ F tI=t2
provided x is not free in and a proof w2 of [ F t2=t3




An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems

abstype thm with
ASSUME : formula -» thm

GEN : thm -» thm
TRANS ¢+ thm » thm -» thm

Code outside of the
abstype’s implementation
can only build theorems by

calling these functions!







lambda-calculus

core calculus of functional
computation

everything is a function
* all arguments and results of
functions are functions

all computation is function
application

common data and control
structures encodable

pi-calculus

core calculus of concurrent
processes, communicating with
messages over channels

everything is processes and channels

* the only thing processes do is
communicate over channels

* the data exchanged when
processes communicate is just a
tuple of channels

all computation is communication

common data and control structures
encodable... including functions!




Behavioral types

o Milner’s simple “sort discipline” for
the pi-calculus

o “Transplanted” type systems from
lambda-calculus

* subtyping
e polymorphic / abstract types

* linear types (“‘one-shot” channels)

o Session types, choreography types




Types for Privacy '

Joint work with Jason Reed, Andreas
Haeberlen, Marco Gaboardi, Arjun Narayan, ...




Motivation: querying private data

How many patients
with lung cancer are
heavy smokers?

I can't tell
you! :-(

Database with s &
hospital records _Ej Alice Bob

= A vast trove of data is accumulating in databases

® This data could be useful for many things

Example: Use hospital records for medical studies

= But how to release it without violating privacy!?




Privacy is hard!

- Anonymize the data

"Patient #147,DOB 11/08/1965, zip code 19104, smokes and has lung
cancer"

What fraction of the U.S. population is uniquely identified by their ZIP
code and their full DOB? 63.3%

Another example: Netflix dataset de-anonymized in 2008

- Aggregate the data

"385 patients both smoke and have lung cancer”

Problem: Someone might know that 384 patients smoke + have
cancer, but isn't sure about Benjamin

=" Need a more principled approach!




Approach: Differential privacy

Should I allow my "How many patients smoke + have cancer?"

data to be
included?

384
& Difference l I‘\ Q%
X i - +1;ra]ur]edgr|11$v|§l/girse
[ 38

5

® |dea: Add a bit of noise to the answer

= "387 patients smoke + have cancer, plus or minus 3"

® Can bound how much information is leaked

= Even under worst-case assumptions!




Problem: How much noise?

" What if someone asks the following:

"What is the number of people in the database who are called
Andreas, multiplied by 1,000,000"

" How do we know...

whether it is okay to answer this (given our bound)?
and, if so, how much noise we need to add?

= Analysis can be done manually...
Example: McSherry/Mironov [KDD'09] on Netflix data

® . but this does not scale!

Each database owner would have to hire a 'privacy expert’
Analysis is nontrivial - what if the expert makes a mistake!?




The Fuzz system

OK to query (db:database) {
answer num = 0;
Ct foreach x&db

if (x.smokes &

< x.hasCancer)
then num ++;

return num;

~ 2

387 Bob

How many patients
with lung cancer are
heavy smokers?

OO

Answer 387
(incl noise)

= We are working on a "programming language for
privacy" called Fuzz

Bob writes question in our language & submits it to Alice
Alice runs the program through our Fuzz system

Fuzz tells Alice whether it is okay to respond...

... as well as a safe answer (including just enough noise)




How does Fuzz do this?
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® Fuzz uses a type system to infer the relevant
property (sensitivity) of a given query

* If program typechecks, we have a proof that running it won't
compromise privacy

= Solid formal guarantee - no more accidental privacy leaks!




Intuition behind the type system

f(x) = x f(x) =7
Sensitivity 1 Sensitivity 0
|
f(x) = 2*x
Sensitivity 2*1
f(x) = 2*x + 7

Sensitivity 2*1 + 0

= Suppose we have a function f(x)=2x+7
= What is its sensitivity?
« Intuitively 2: changing the input by 1 changes the output by 2




Current directions

® Type inference (!)

e Adding dependent types to express more
precise constraints on behavior
* E.g, the fact that the sensitivity of a private k-means

algorithm depends on how many rounds of iteration
you ask it to perform




Thank you!




