
Types á la Milner
Benjamin C. Pierce

University of Pennsylvania

May 2012

“Types are the leaven of computer 
programming: they make it digestible.”

- R. Milner



Robin Milner  (1934-2010)



For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet practical tool 
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference 
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, 
the study of the relationship between operational and 
denotational semantics.



For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet practical tool 
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference 
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, 
the study of the relationship between operational and 
denotational semantics.

LCF



For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet practical tool 
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference 
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, 
the study of the relationship between operational and 
denotational semantics.

ML



For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet practical tool 
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference 
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, 
the study of the relationship between operational and 
denotational semantics.

CCS Pi-Calculus



Milner and me
• Last ML postdoc at Edinburgh

• and one of the first Cambridge postdocs, with Peter Sewell

• Satisfied ML user

• Pi-calculus type systems (with Davide Sangiorgi)

• Pict programming language (with David Turner) 

• Local type inference  ➜

• POPLMark and Software Foundations

lambda-calculus

ML, Haskell, Scheme, ...

pi-calculus

Pict=



Types á la Milner

Type inference
Abstract types

Types for interaction

Types for privacy





Edinburgh ML

LeLisp ML

CaML

Caml-Light

OCaml F#

Standard ML

SML 97

LCF

SML 90





Polymorphism
Consider the list mapping function

For example:
      map(square, [1,2,3]) = [1,4,9]

A good type for map is:



Roots of Polymorphism
• Theory: Girard, Reynolds, Plotkin,...

• Practice: Morris, Liskov, Burstall, MacQueen, ...

• Languages: CLU, Euclid, Simula, Alphard, 
Hope, ...





Type inference

A Metalanguage for interactive proof in LCF
M. Gordon, R. Milner, L. Morris, M. Newey, C. Wadsworth 
(POPL 1982)



Most g
eneral 

solution:



Edinburgh ML

LeLisp ML

CaML

Caml-Light

OCaml F#

Miranda

Haskell

Pict

Scala

Standard ML

SML 97

LCF

etc.

SML 90





Type Soundess
1. Give a denotational semantics assigning each 

expression e a meaning [[e]] in some mathematical 
domain of abstract computations 
• ... including a special element wrong for expressions that fail 

when evaluated

2. Show that if the type inference algorithm assigns a 
type τ to some expression e, then e has type τ

3. Associate each type τ with a set of expression 
meanings [[τ]]

4. Show that if expression e has type τ, then [[e]] ∈ [[τ]]



• some types describe structure:

• others constrain the behavior of programs... 

• ...and their environments:

Types and behavior

{name: String, age: Int, email: String}

type ≈ contract between program and environment



Abstract types are behavioral invariants



An abstract type of theorems
LCF is basically a programming language (ML) with 
a predefined abstract type of theorems

abstype thm with
  ASSUME : formula ! thm
  GEN    : thm ! thm
  TRANS  : thm ! thm ! thm
  ...

ASSUME f 
constructs a proof of 

f ⊦ f

GEN x w  
constructs a proof of 

Γ ⊦ ∀x.f
from a proof of Γ ⊦ f 

provided x is not free in Γ

TRANS w1 w2
constructs a proof of 

Γ ⊦ t1=t3
from a proof w1 of Γ ⊦ t1=t2 
and a proof w2 of Γ ⊦ t2=t3



An abstract type of theorems
LCF is basically a programming language (ML) with 
a predefined abstract type of theorems

abstype thm with
  ASSUME : formula ! thm
  GEN    : thm ! thm
  TRANS  : thm ! thm ! thm
  ...

Code outside of the 
abstype’s implementation 
can only build theorems by 

calling these functions!



Types for Interaction



lambda-calculus
[Church, 1940s]

pi-calculus
[Milner, Parrow, Walker, 1989]

core calculus of functional 
computation

core calculus of concurrent 
processes, communicating with 
messages over channels

everything is a function
• all arguments and results of 

functions are functions  

everything is processes and channels
• the only thing processes do is 

communicate over channels
• the data exchanged when 

processes communicate is just a 
tuple of channels

all computation is function 
application

all computation is communication

common data and control 
structures encodable

common data and control structures 
encodable... including functions!



Behavioral types
• [1991] Milner’s simple “sort discipline” for 

the pi-calculus

• [1993ff] “Transplanted” type systems from 
lambda-calculus
• subtyping

• polymorphic / abstract types

• linear types  (“one-shot” channels)

• [2000s] Session types, choreography types



Types for Privacy

Joint work with Jason Reed, Andreas 
Haeberlen, Marco Gaboardi, Arjun Narayan, ...



Motivation: querying private data

n A vast trove of data is accumulating in databases
n This data could be useful for many things

n Example: Use hospital records for medical studies

n But how to release it without violating privacy?

Database with
hospital records Alice Bob

How many patients 
with lung cancer are 

heavy smokers?
I can't tell 
you!  :-(



Privacy is hard!

n Idea #1: Anonymize the data
n "Patient #147, DOB 11/08/1965, zip code 19104, smokes  and has lung 

cancer"
n What fraction of the U.S. population is uniquely identified by their ZIP 

code and their full DOB?
n Another example: Netflix dataset de-anonymized in 2008

n Idea #2: Aggregate the data
n "385 patients both smoke and have lung cancer"
n Problem: Someone might know that 384 patients smoke + have 

cancer, but isn't sure about Benjamin

n Need a more principled approach!

63.3%



Approach: Differential privacy

n Idea: Add a bit of noise to the answer
n "387 patients smoke + have cancer, plus or minus 3"

n Can bound how much information is leaked
n Even under worst-case assumptions!

Should I allow my 
data to be 
included?

No

Yes

"How many patients smoke + have cancer?"

Difference
X

384

385

True answer
+ random noise



Problem: How much noise?

n What if someone asks the following:
n "What is the number of people in the database who are called 

Andreas, multiplied by 1,000,000"

n How do we know...
n whether it is okay to answer this (given our bound)?
n and, if so, how much noise we need to add?

n Analysis can be done manually...
n Example: McSherry/Mironov [KDD'09] on Netflix data

n ... but this does not scale!
n Each database owner would have to hire a 'privacy expert'
n Analysis is nontrivial - what if the expert makes a mistake?



The Fuzz system

n We are working on a "programming language for 
privacy" called Fuzz
n Bob writes question in our language & submits it to Alice
n Alice runs the program through our Fuzz system
n Fuzz tells Alice whether it is okay to respond...
n ... as well as a safe answer (including just enough noise)

Alice Bob

How many patients 
with lung cancer are 

heavy smokers?

387

query(db:database) {
  num = 0;
  foreach x∈db
     if (x.smokes &
       x.hasCancer)
     then num ++;
  return num;
}

Fuzz

OK to 
answer

Answer 387
(incl noise)



How does Fuzz do this?

n Fuzz uses a type system to infer the relevant 
property (sensitivity) of a given query
n If program typechecks, we have a proof that running it won't 

compromise privacy
n Solid formal guarantee - no more accidental privacy leaks!





Current directions
• Type inference (!)

• Adding dependent types to express more 
precise constraints on behavior
• E.g., the fact that the sensitivity of a private k-means 

algorithm depends on how many rounds of iteration 
you ask it to perform



Thank you!


