“Types are the leaven of computer
programming: they make it digestible.”
- R. Milner

Types a la Milner

Benjamin C. Pierce

University of Pennsylvania

May 2012

Robin Milner (1934-2010)

For three distinct and complete achievements:

|. LCF, the mechanization of Scott's Logic of Computable

Functions, probably the first theoretically based yet practical tool
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction,
the study of the relationship between operational and
denotational semantics.

For three distinct and complete achievements:

|. LCF, the mechanization of Scott's Logic of Computable

Functions, probably the first theoretically based yet practical tool
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction,
the study of the relationship between operational and
denotational semantics.

For three distinct and complete achievements:

|. LCF, the mechanization of Scott's Logic of Computable
Functions, probably the first theoretically based yet practical tool
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference
together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction,
the study of the relationship between operational and
denotational semantics.

For three distinct and complete achievements:

|. LCF, the mechanization of Scott's Logic of Computable
Functions, probably the first theoretically based yet practical tool
for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference
together with a type-safe exception-handling mechanism;

3. CCS,a ger#r)’ ofRiﬁuGal C“I“S

In addition, he formulated and strongly advanced full abstraction,
the study of the relationship between operational and
denotational semantics.

Milner and me

® | ast ML postdoc at Edinburgh

* and one of the first Cambridge postdocs, with Peter Sewell

e Satisfied ML user Hﬁmﬁ@@m

® Pi-calculus type systems (with Davide Sangiorgi)

® Pict programming Ianguage (with David Turner) ‘

lambda-calculus pi-calculus

ML, Haskell, Scheme, ... Pict

® | ocal type inference -» BScala

e POPLMark and Software Foundations

Type inference
Abstract types

lTypes a la Milner

Types for interaction

Types for privacy

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %"~ which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“‘go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these

results to richer languages; a type-checking algorithm based on # is in fact already
implemented and working, for the metalanguage) the Edinburgh LCF system.,

LCF

l

Edinburgh ML

/

LeLisp ML Standard ML

|

CaML v
| SML 90

Caml-Light

/ +

OCaml — F# SML 9/

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,

entails defining procedures which work well on objects of a wide variety. We present a
ormal type discipline for such polymorphic procedures i the context of a simple pro-
gramming language, and a compite time type-checking algorithm %~ which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on # is in fact already

implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Polymorphism

Consider the list mapping function

letrec map(f, m) = if null (m) then nil

else cons (f (hd(m)), map (f, ti(m)))
For example:

map(square, [1,2,3]) =[1.4.9]

A good type for map is:
(e — B) X o list) — B list

Roots of Polymorphism

e [heory: Girard, Reynolds, Plot

® Practice: Morris, Liskov, Bursta

e | anguages: CLU, Euclid, Simula,

Hope, ...

in,...

|, MacQueen, ...
Alphard,

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphi peedures re—context of a simple pro-
gramming language, and a compile timé type-checkmg algorithm % which enforces the
discipline. A Semantic Soundness Theorem (basedom al semantics for the language)
states that well-type programs cannot ‘“go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on # is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Type inference

It is remarkably conven-
ient in interactive programming to be relieved of
the need to specify types, with assurance that
badly-typed phrases will be caught, reported, and
not evaluated.

A Metalanguage for interactive proof in LCF
M. Gordon, R. Milner, L. Morris, M. Newey, C.Wadsworth
(POPL 1982)

letrec map(f, m) = if null (m) then nil

else cons (f (hd(m)), map (f, tl(m)))

Gnull = Ty list — bool, Omap
Onil = Ty list, Onull
Ohg = T3 list — 74, Chd

o1 = 74 list — 7, list, Otl
Ocons = (75 X 7y list) — 74 list of
Omap
Ocons
P1

eﬂ‘e@\

|

—_—
—_—

f

ot X Om —> Py,
om — bool,
Om —> Py ,
Om — P3,

P2 = Py,

or X P3—> P55
Ps X P5 > Pg s
Onil = pPg -

‘l\oj'ofz){,\o(\: Omap — ('}/ —>> 8) X v list — o list

LCF

l

Edlnburgh ML

~ -~
.....
i s
-~ -~
~~
-~ ~
~ -~ -,
~ N -
~ - -
o ~ -
- -
~ =~
.....
......
-~

LeLisp ML Standard ML eranda P|ct etc

|

CaML v
| SML 90

Caml-Light

/ ;

¢ .
OCaml — F# SML 97 Haskell Sgala

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %" which enforces the
discipline. A Semanti d on a formal semantics for the language)
states ell-type programs cannot ‘“‘go wrong’’ an ntactic Soundness Theorem
states that if % accepts a program then it is well typed We' also discuss extending these
results to ri es; a type-checki based on # is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Type Soundess

|. Give a denotational semantics assigning each
expression e a meaning [[e]] in some mathematical
domain of abstract computations

e ..including a special element wrong for expressions that fail
when evaluated

2. Show that if the type inference algorithm assigns a
type T to some expression e, then e has type T

3. Associate each type T with a set of expression
meanings [[T]]

4. Show that if expression e has type T, then [[e]] € [[T]]

well-type programs cannot ‘“go wrong”

Types and behavior

® some types describe structure:
{name: String, age: Int, email: String}

® others constrain the behavior of programs...
((x — B) X o list) —§ B list

e ..and their environments:
((o>‘ — B) X o list) — B list

type = contract between program and environment

Abstract types are behavioral invariants

The principal aims then in designing ML were

to make it impossible to prove non-theorems yet
easy to program strategies for performing proofs.

In ICF we give the user the freedam to write his own
tactics (in ML) but the type-checker ensures that
these cannot perform faulty proofs - at worst a
tactic can lead to an unwanted theorem (for example
which does not achieve the desired goal).

An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems
abstype thm with

ASSUME : formula » thm €& ASSUME f
. thm - thm constructs a proof of
GEN X w TRANS wl w2
constructs a proof of constructs a proof of
[+ vx.f [+tl=t3
from a proof of I |- f from a proof wl of [F tI=t2
provided x is not free in and a proof w2 of [F t2=t3

An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems

abstype thm with
ASSUME : formula -» thm

GEN : thm -» thm
TRANS ¢+ thm » thm -» thm

Code outside of the
abstype’s implementation
can only build theorems by

calling these functions!

lambda-calculus

core calculus of functional
computation

everything is a function
* all arguments and results of
functions are functions

all computation is function
application

common data and control
structures encodable

pi-calculus

core calculus of concurrent
processes, communicating with
messages over channels

everything is processes and channels

* the only thing processes do is
communicate over channels

* the data exchanged when
processes communicate is just a
tuple of channels

all computation is communication

common data and control structures
encodable... including functions!

Behavioral types

o Milner’s simple “sort discipline” for
the pi-calculus

o “Transplanted” type systems from
lambda-calculus

* subtyping
e polymorphic / abstract types

* linear types (“‘one-shot” channels)

o Session types, choreography types

Types for Privacy '

Joint work with Jason Reed, Andreas
Haeberlen, Marco Gaboardi, Arjun Narayan, ...

Motivation: querying private data

How many patients
with lung cancer are
heavy smokers?

I can't tell
you! :-(

Database with s &
hospital records _Ej Alice Bob

= A vast trove of data is accumulating in databases

® This data could be useful for many things

Example: Use hospital records for medical studies

= But how to release it without violating privacy!?

Privacy is hard!

- Anonymize the data

"Patient #147,DOB 11/08/1965, zip code 19104, smokes and has lung
cancer"

What fraction of the U.S. population is uniquely identified by their ZIP
code and their full DOB? 63.3%

Another example: Netflix dataset de-anonymized in 2008

- Aggregate the data

"385 patients both smoke and have lung cancer”

Problem: Someone might know that 384 patients smoke + have
cancer, but isn't sure about Benjamin

=" Need a more principled approach!

Approach: Differential privacy

Should I allow my "How many patients smoke + have cancer?"

data to be
included?

384
& Difference l I‘\ Q%
X i - +1;ra]ur]edgr|11$v|§l/girse
[38

5

® |dea: Add a bit of noise to the answer

= "387 patients smoke + have cancer, plus or minus 3"

® Can bound how much information is leaked

= Even under worst-case assumptions!

Problem: How much noise?

" What if someone asks the following:

"What is the number of people in the database who are called
Andreas, multiplied by 1,000,000"

" How do we know...

whether it is okay to answer this (given our bound)?
and, if so, how much noise we need to add?

= Analysis can be done manually...
Example: McSherry/Mironov [KDD'09] on Netflix data

® . but this does not scale!

Each database owner would have to hire a 'privacy expert’
Analysis is nontrivial - what if the expert makes a mistake!?

The Fuzz system

OK to query (db:database) {
answer num = 0;
Ct foreach x&db

if (x.smokes &

< x.hasCancer)
then num ++;

return num;

~ 2

387 Bob

How many patients
with lung cancer are
heavy smokers?

OO

Answer 387
(incl noise)

= We are working on a "programming language for
privacy" called Fuzz

Bob writes question in our language & submits it to Alice
Alice runs the program through our Fuzz system

Fuzz tells Alice whether it is okay to respond...

... as well as a safe answer (including just enough noise)

How does Fuzz do this?

e T hert
r>1 AlFel:m I'kes:m Iihe:n ", D.x:yThe:T oy
var] ®I I'Hinj,e:m + 7 'Xxe:7—o7
| I o e A+TF (e1,e2): 71 @ T2
AbFe :7—T I'kHes:T IziaaThbe:r
'kFe:m @ Az T,yrmbe 7 —E —1
1 ® T2 r T, Y ir T2 . A+THepes: 7 F'tXee:7— 171
o — 7. ')/‘ / -
A+ rl'Flet(z,y) =eine’ : 7 Aber:7—1 TDhrey:r Fke:r
—F _7
I'kep:m 'Ees:m F'kFe:m & 7 A+ocT Feyes:r sTkle:lor
&1 &F rte-
' {(e1,e2) 11 & 1 Fme:T I'ke:ler AzipsThHe 7 e: [ua.t/a]T
< { () B ,U]
Az:T e <! A+rTFlet!lz =eine : 7/ r'_f:(()\l_ée”—
'kte:m + 7 Ax:imobFes:T 'ke:T
' — +F pE
A +rl'F caseeof x.ey | zex: 7T I' - unfolde : [ua.7/a]T
pnoT

® Fuzz uses a type system to infer the relevant
property (sensitivity) of a given query

* If program typechecks, we have a proof that running it won't
compromise privacy

= Solid formal guarantee - no more accidental privacy leaks!

Intuition behind the type system

f(x) = x f(x) =7
Sensitivity 1 Sensitivity 0
|
f(x) = 2*x
Sensitivity 2*1
f(x) = 2*x + 7

Sensitivity 2*1 + 0

= Suppose we have a function f(x)=2x+7
= What is its sensitivity?
« Intuitively 2: changing the input by 1 changes the output by 2

Current directions

® Type inference (!)

e Adding dependent types to express more
precise constraints on behavior
* E.g, the fact that the sensitivity of a private k-means

algorithm depends on how many rounds of iteration
you ask it to perform

Thank you!

