

 1

POLYGLOT PYTHON:
PYTHON/SCALA

INTEROP

ANDREA O. K. WRIGHT
Chariot Solutions

https://github.com/A-OK/Snakes-and-Ladders
aok@chariotsolutions.com

I don't see this talk as a series of how-to's for developers with a burning need
to do Python\Scala interop. It's more of a talk about approaches to integrating
a host and guest language, more generally. The API's and libraries I'll be
covering all have counterparts in other languages.

 2

 Python/C API
 Python Metaprogramming

Python Implementation in Java (Jython)

Java Native Interface (JNI)
Java Reflection

 Sockets
 Base64
 Binary

I'll show you basic usage of these APIs, talk a little about what these tools offer
beyond what I'll be showing, and we'll also look at how developers have
wrapped these APIs in a manner that I like to describe as not just wrapping ...

 3
http://www.wholeliving.com/sites/files/wholeliving.com/ecl/images/content/pub/body_and_soul/2010Q4/mbd106472_1210_gift2_xl.jpg

 … but wrapping with a bow.

 4

Scala is a JVM (Java Virtual Machine) language that compiles down to Java
bytecode. There are some incompatibilities, but for the most part, it's easy to
access Java from Scala and vice versa.

It probably won't surprise you that many of the tools I'm going to show you
were written for Java developers, not Scala developers.

So why did I port all of my examples to Scala?

Because Scala is a multi-paradigm language. It's object-oriented. It has
strong support for programming in a functional style, and there are some
features unique to Scala that make it powerful, flexible and
concise. For all of these reasons, you can use it to ...

 5
http://www.schulzmuseum.org/exhibits/permanent/Christo/christo.html

… wrap code in interesting ways.

This is the replica of Snoopy's doghouse, wrapped by the artists Christo and
Jeanne-Claude that is currently on display at the Charles M. Schultz Museum
In Santa Rosa, California.

 6

http://www.mindfood.com/upload/images/article_images/042009/0e0b6553-5794-410c-80f2-8658288ad749.jpg

And this is a portion of the coast of Australia as wrapped by Christo and
Jeanne-Claude. It's part of one of the couple's most epic wrapping projects:
wrapping 1 million feet of the Australian coastline.

Between Scala and Python there's great potential for epic wrapping.

 7

Scala Hosting Python

Python Hosting Scala

Language Neutral Protocols

I'm going to start off with examples of Scala hosting Python, move on to
examples where Python is the host language, and then cover language neutral
protocols.

The code examples in the slide generally omit “import” statements
and “include” statements to keep the slides from being too cluttered, but the
complete source code for the examples can be found at:
https://github.com/A-OK/Snakes-and-Ladders

 8

Scala

hosting
Python

In this section, we'll look at Scala programs that access functions defined in a
Python module.

 9

Python Micro-library

def py_python_age(age):
 return age / 2.8

python_utils.py

Here's the Python module I will be using in almost all of the examples in this
Section. I want to focus on the interop libraries, not some business domain, so
I'm using this python_utils micro-library to represent an actual, useful Python
-based resource.

The single symbolic function in this micro-library takes a person's age and
determines how old that person would be if that person was a python regius (a
royal or ball python) . The formula is based on the average life expectancy for
a python being 30 years. Using this formula, a 30-year old person would have
The relative maturity of a 10.1-year-old python.

 10

Scala Hosting Python

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

The first Python\Java bridge I'm going to use in a Scala program is JEPP. You'l
see 'JEPP' with 2 P's and “JEP” with one P used interchangeably in the JEPP
documentation and any Web resources about JEP. I learned from its author,
Mike Johnson, that this is because there was already a “JEP” project on
SourceForge when he initially shared the code from there, and project names
across SourceForge need to be unique. The code is currently available on
Github, which does not enforce this restriction across accounts.

The JEPP project leverages both the Python C/API, which ships with
Python and the Java Native Interface (JNI) API, which ships with Java. JEPP
uses the Python C/API to execute logic written in Python from functions written
in C, and then it uses Java's JNI to invoke said functions written in C that use
the Python/C API to execute logic written in Python.

In the next few slides we'll look at a Scala program that use JEPP to
communicate with a Python module, and the slides following that take you
behind the scenes to look at some of the relevant C code.

 11

Scala Hosting Python: JEPP
object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

This slide provides a first look at a Scala program.

This talk does not require previous experience with Scala. Anyone familiar with
using dot notation to invoke methods on object should be able to understand
most of the Scala on these slides. If there's anything else you need to know
about Scala syntax or features, I'll try to to fill you in on an as-needed basis.

 12

Scala Hosting Python: JEPP
object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

This is the definition of a Scala class called PythonAge.

The keyword object appears where you might expect to see the class
keyword. The keyword object is used in lieu of class to create a Scala
Singleton Object. You can access the properties of and invoke methods on a
Singleton Object without instantiating it. I'll talk more about using Singleton
Objects when we look at accessing Scala from within Python programs.

Using the phrase extends App is conceptually related to defining a main
method in a Python module. The Scala compiler will insert a main method into
this class. This main method will contain all the statements between the curly
braces, and will be executed when the file containing the class definition for
this class is run from the command line by passing its name to the Scala
Interpreter. In other words, this phrase enables you to run this class file as if it
were a script.

 13

Scala Hosting Python: JEPP
object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

This line instantiates a Jep object. Jep is a Java-based component of the
JEPP library. The JEPP library contains Java components, C components
and Python components.

All of the services that JEPP provides to Java classes (and that are also
accessible to Scala classes) are defined as methods on the Jep class.

The Scala keyword val, which begins the line, denotes an immutable variable
the Scala keyword var would be used declare a mutable variable. The Scala
community recommends using vals as opposed to vars whenever possible.

 14

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

Here, invoking JEPP's runScript method and passing it the name of the
Python micro-library script loads the script into the JEPP environment,
Enabling Scala to access any Python functions, classes or variables defined
therein.

 15

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

Here we're preparing an argument to pass to the JEPP invoke method and
assigning it to a variable called age.

The JEPP invoke method takes the name of the Python function you want to
invoke and a collection of arguments to pass to that Python function.

The arguments must each be cast as Java objects (java.lang.Object or its
subclasses). The Scala phrase asInstanceOf[AnyRef] takes care of this
for the single argument I am going to pass – the age I want to convert to
python years. Scala's “AnyRef” is comparable to “java.lang.Object”.

I'm passing the number 9.0 because that is how old the Scala language is at
this writing.

 16

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

Here I'm using the JEPP invoke method to invoke the Python micro-library
function py_python_age and assigning the result to the variable
pythonAge.

 17

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

This line prints out the age in python years (the value of pythonAge) after
rounding it.

The reason I'm not just printing out pythonAge is because any generic object
can be passed to println in Scala. I've seen a lot of language interop
Sample code online that simply prints out a result once it's obtained from a
library written in the guest language.

Calling round represents doing something useful with the return value,
beyond what you can do with a generic object in Scala.

In this case, I need to explicitly use Scala's asInstanceOf to cast the return
value as a Float in order to round it. In some examples in this talk, the bridge
library calls will take care of this casting. I want to give you an idea of where
you can expect to do casting in your own interop code.

 18

Scala Hosting Python: JEPP

 public Object invoke(String name, Object... args)
 throws JepException {
 if(name == null || name.trim().equals(""))
 throw new JepException("Invalid function name.");

 int[] types = new int[args.length];

 for(int i = 0; i < args.length; i++)
 types[i] = Util.getTypeId(args[i]);

 return invoke(this.tstate, name, args, types);
 }

Jep.java
Java Native Interface (JNI)

Now that we have looked at how to use JEPP to invoke a Python function from
a Scala program, we'll look at how JEPP wraps the Python C/API and JNI in
order to accomplish this.

Here is the source code for JEPP's invoke, which is defined as a method in
the Jep class.

I've bolded and I'm using an arrow to point out a call to a different invoke
method with a different signature. In Java (and Scala) methods you can define
the same method multiple times using the same method name with different
arguments.

This second invoke method ...

 19

Scala Hosting Python: JEPP

 public Object invoke(String name, Object... args)
 throws JepException {
 if(name == null || name.trim().equals(""))
 throw new JepException("Invalid function name.");

 int[] types = new int[args.length];

 for(int i = 0; i < args.length; i++)
 types[i] = Util.getTypeId(args[i]);

 return invoke(this.tstate, name, args, types);
 }

 private native Object invoke(long tstate,
 String name,
 Object[] args,
 int[] types);

Jep.java
Java Native Interface (JNI)

… is declared as a native method, meaning it is implemented in C and
accessible via JNI.

The bottom part of this slide shows how this nested invoke (with an arity of
4) is declared as a native method in Jep.java using the native keyword.

 20

Scala Hosting Python: JEPP

 JNIEXPORT jobject JNICALL Java_jep_Jep_invoke
 (JNIEnv *env,jobject obj,jlong tstate,
 jstring name,jobjectArray args,jintArray types) {

 const char *cname;
 jobject ret;

 cname = jstring2char(env, name);

 ret = pyembed_invoke_method(env,
 (intptr_t) tstate, cname, args, types);

 release_utf_char(env, name, cname);

 return ret;

 }

jep.c
Java Native Interface (JNI)

This is the C implementation that corresponds to the Java native
declaration. It lives in the file jep.c.

The name of the function, which I have circled, follows the JNI naming
conventions for C functions – the word 'Java' followed by the fully qualified
name of the Java class (ie including the package name), followed by the
function name : Java_jep_Jep_invoke

I've also circled the first argument because I want to point out that a JNIEnv
interface pointer, which provides access to all the functions JNI offers, is
passed in to every native method made available via JNI. It represent a
decision that's an important part of the JNI architecture. Because it is passed
in as a function argument, as opposed to being configured as a hard-wired
reference, developers can run JNI-based programs against a different
JVM implementation than they built their libraries against.

In the next slide, we'll look at one of the functions that is called by the logic in
Java_jep_Jep_invoke downstream. I'm showing you this particular
function...

 21

Scala Hosting Python: JEPP

Java Native Interface (JNI) / Python/C API

jobject pyembed_invoke(JNIEnv *env, PyObject *callable,
 jobjectArray args, jintArray _types) {
 ...
 types = (*env)->GetIntArrayElements(env, _types, &isCopy);
 arglen = (*env)->GetArrayLength(env, args);
 pyargs = PyTuple_New(arglen);
 for(iarg = 0; iarg < arglen; iarg++) { ...
 val = (*env)->GetObjectArrayElement(env, args, iarg);
 typeid = (int) types[iarg];
 pyval = convert_jobject(env, val, typeid); ...
 PyTuple_SET_ITEM(pyargs, iarg, pyval);...
 }
 pyret = PyObject_CallObject(callable, pyargs); ...
 ret = pyembed_box_py(env, pyret);
EXIT:
 // memory management
 return ret;
}

pyembed.c

...because it shows JNI and the Python/C API actually talking to each other.

Lines that call into JNI functions are red and lines that call into the Python/C
API are blue. Ellipses and comments serve as placeholders for code that
handles memory management or exceptions.

Since we're now several layers removed from the top level JEPP API call
where we started this deep dive, recall that we're walking through functions
called by Jep#invoke, which invokes a Python function, defined in a .py file,
given the name of the function and a variable-length list of arguments, typecast
as Java objects.

JNI calls are used to gain access to the elements in the array containing the
arguments that need to be passed to the Python function we want to invoke
via JEPP (ie py_python_age). Python/C API functions use values that were
extracted via JNI to populate the pyargs tuple, which will get passed to
PyObject_CallObject, the Python/C API function that can invoke a Python
function given the function name and the function arguments packaged in a
tuple.

I consider this call to PyObject_CallObject, which I have ...

 22

Scala Hosting Python: JEPP

jobject pyembed_invoke(JNIEnv *env, PyObject *callable,
 jobjectArray args, jintArray _types) {
 ...
 types = (*env)->GetIntArrayElements(env, _types, &isCopy);
 arglen = (*env)->GetArrayLength(env, args);
 pyargs = PyTuple_New(arglen);
 for(iarg = 0; iarg < arglen; iarg++) { ...
 val = (*env)->GetObjectArrayElement(env, args, iarg);
 typeid = (int) types[iarg];
 pyval = convert_jobject(env, val, typeid); ...
 PyTuple_SET_ITEM(pyargs, iarg, pyval);...
 }
 pyret = PyObject_CallObject(callable, pyargs); ...
 ret = pyembed_box_py(env, pyret);
EXIT:
 // memory management
 return ret;
}

pyembed.c
Java Native Interface (JNI) / Python/C API

… highlighted in this view of the function we were just looking at, to be the
focal point of JEPP. The fact Python is flexible enough to offer a Python/C API
call that invokes arbitrary functions defined in a .py file gets right to the heart
of JEPP's raison d'etre.

If I wanted to call functions from a C utilities library from a Scala program
using JNI alone, I'd need to either write an individual JNI-based wrapper for
each and every function in that C utilities library or I'd have to write some kind
of home-grown dispatcher that would need to know at least some details about
every C function I want to expose to Scala.

Every time a new function was added to said C utilities library I would need to
write a new JNI-based wrapper or I'd have to modify my dispatcher code – and
I'd have to do some recompilation.

With JEPP, on the other hand, if I want to call functions from a Python utilities
library from Scala, I can call any of the Python functions via Jep#invoke.
When new functions are added to the Python utilities library, they are
immediately available for use from Scala right after I save my .py file.

 23

Natural Scripting Language Function Invocation

Code Commit Blog
JRuby Interop DSL in Scala

Daniel Spiewak
http://www.codecommit.com/blog/ruby/jruby-interop-dsl-in-scala

While using JEPP enables you to write pure, unfettered Python for
consumption by Scala, the code you need to write on the Scala side, including
packaging arguments to pass to the Python function in an array and using
Jep#invoke, is a bit cumbersome.

Daniel Spiewak, a programming languages enthusiast and blogger, came up
with an idea for how to wrap JEPP-like library calls so that calling a function
written in a guest language in a Scala program would be virtually
indistinguishable from calling a Scala function.

He introduced this idea on his blog, Code Commit, using JRuby as the guest
language in all of his examples, in a post called “JRuby Interop DSL in Scala”.

I ported his JRuby wrapper code to Python.

 24

object PythonAge extends App with Scalathon {

 python_import("python_utils")

 val pythonAge: Float = 'py_python_age(9.0)

 println(pythonAge.round)

}

Scala Hosting Python: a la Spiewak

Here's a Scala program that uses Daniel Spiewak's wrapping scheme to allow
the Scala program to access the py_python_age function defined in my
Python micro-library.

I'll be stepping through this code line by line, and then we'll walk through the
code that makes this kind of wrapping possible.

You don't need to flip back to the beginning of the slides if you don't
remember what the first version of this program looked like. I'll show you
both in a split screen comparison shortly.

 25

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float =

 println(pythonAge.round)

}

Scala Hosting Python: a la Spiewak

'py_python_age(9.0)

Here I've highlighted the call to the the Python micro-library's py_python_age
function so you could get a good look at it.

As you can see, there's virtually no difference between the way this Python
function is called and the way I would call a function written in Scala.

I say “virtually” before there is a difference. The difference is that the function
name...

 26

object PythonAge extends App with Scalathon {

 python_import("python_utils")

 val pythonAge: Float =

 println(pythonAge.round)

}

Scala Hosting Python: a la Spiewak

'py
_py

tho
n_a

ge(
9.0

)

… is preceded by a single quote..

In Scala, preceding text with a single quote denotes a symbol. There is no
Python equivalent to a Scala symbol. Symbols are interned. They are passed
in argument lists as flags, and they can be used as keys in key/value pairs.

You don't see Scala symbols used conventionally in lieu of function names.

In a bit, I'll show you how Spiewak's idea of using symbols in this novel way is
a key part of the wrapping mechanism he designed.

 27

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float = 'py_python_age(9.0)

 println(pythonAge.round)

}

Scala Hosting Python a la Spiewak vs. JEPP

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

A la Spiewak

JEPP Out of the Box

Here's a first look at JEPP a la Spiewak (on the top half of the slide) vs.
JEPP Out of the Box (on the bottom half of the slide).

The first thing I'd like to point out is that the Spiewak-inspired version is more
compact. It does the same thing in fewer lines, and the lines are generally
shorter.

 28

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float = py_python_age(9.0)

 println(pythonAge.round)

}

Scala Hosting Python a la Spiewak vs. JEPP

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

A la Spiewak

JEPP Out of the Box

Scalathon, in the phrase I've highlighted in top half of the slide (with
Scalathon), is a Scala trait. A Scala trait is similar in some ways to an
abstract base class in Python and in some ways to a Python module.

A trait can include declarations for both abstract and concrete methods. The
with keyword is part of Scala's support for mixins and serves to add the
Scalathon trait's concrete methods to the PythonAge definition. If the
Scalathon trait included any abstract methods, PythonAge would need to
provide implementations for them. Any code, including inner class definitions
in the Scalathon trait, becomes part of PythonAge.

Scalathon is a trait that facilitates Python/Scala interop and that I modeled
after Daniel Spiewak's Scala/JRuby interop DSL. I called it Scalathon
because it's one of many possible ways to combine the names 'Scala' and
'Python'. As you will see, I use other combinations of these language names as
module names in other examples.

I've paired the phrase with Scalathon with the line that instantiates a Jep
instance on the bottom half of the slide because instantiating a Jep instance is
one of the aspects of using JEPP that the Scalathon trait encapsulates.

 29

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float = 'py_python_age(9.0)

 println(pythonAge.round)

}

Scala Hosting Python a la Spiewak vs. JEPP

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

A la Spiewak

JEPP Out of the Box

Here, the method pythonImport, which I've highlighted in the Spiewak-
inspired version, is a garden-variety wrapper (as opposed to the more exotic
wrappers we'll be looking at) that is defined in the Scalathon trait. Basically, it
wraps a call to jep.runScript. The purpose of the wrapper is to make
running the Python script at least a little more like importing a Python module.

I've highlighted the jep.runScript call in the JEPP 'Out of the Box' version.

 30

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float = 'py_python_age(9.0)

 println(pythonAge.round)

}

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

A la Spiewak

JEPP Out of the Box

Scala Hosting Python a la Spiewak vs. JEPP

Here's where the Spiewak-inspired version shines.

This slide contrasts being able to call a function written in Python almost as if it
were a function defined in Scala with needing to pass the function name and
any arguments to Jep#invoke.

This slide also contrasts a more unobtrusive kind of typecasting in the
Spiewak-inspired version with the more heavy-handed asInstanceOf in the
'Out of the Box' version.

The Scala syntax used for typecasting in the 'A la Spiewak' version is
something I have not shown you in a Scala program before. In Scala, you can
specify the type for a variable by following it with a colon and the type.

I'll talk about the significance of using the type Float cast in the top of the slide
vs, the type AnyRef cast on the bottom on the next slide.

 31

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float = py_python_age(9.0)

 println(pythonAge.round)

}

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

A la Spiewak

JEPP Out of the Box

Scala Hosting Python a la Spiewak vs. JEPP

This slide points out that no typecast is necessary in order to call round on the
value returned from the wrapped call to py_python_age in the 'A la Spiewak'
version, while the JEPP 'Out of the Box' version requires the heavy-handed
asInstanceOf[Float] on the bottom.

You may well be wondering if the typecast on the bottom could be avoided if
the age parameter was cast as a Float instead of the more general AnyRef.
The answer is no. The signature of the Java-based JEPP method
Jep#invoke is public Object invoke(String name, Object...
args), meaning that the return type is a Java Object. The return value of
Jep#invoke is always going to be a generic Java Object and only methods
defined on java.lang.Object can be invoked on it without a typecast in the
calling code.

The reason that round can be called on pythonAge in the 'A La Spiewak'
version without typecasting has to do with the way Jep#invoke is wrapped in
the Scalathon trait, and we'll look at the source code for that wrapper shortly.

In order to understand how the Scalathon trait works, however, there are a
couple of additional things you need to know about Scala.

 32

Scala Implicit Conversions

scala> 21
res0: Int = 21

scala> 21.compare(9)
res1: Int = 1

scala> 21.compare(24)
res2: Int = -1

The first is how Scala's implicit conversions work.

This slide shows an implicit conversion in action. It captures a console session
in which I invoked the interactive Scala prompt. What I entered is
represented by black text, and the Scala prompt itself and any console
output is colored red.

The Scala console reports the value and type of the expression on each line,
so you can see that the 21, entered on the first line is an Int. On the next 2
lines, I call a method called compare on 21. The compare method returns 1,
-1 or 0 depending on whether the object compare is invoked on is greater
than, less than, or equal to the number passed in.

It looks for all the world like the Int class supports the compare method, but in
actual fact, it does not.

A Scala implicit conversion is responsible for this illusion. There are implicit
conversions defined in the Scala source, and you can also declare your own.

 33

Scala Implicit Conversions

implicit def intWrapper(x: Int)= new runtime.RichInt(x)

21.compare(8)

The arrow is pointing to the implicit conversion in the Scala core
source code that makes it appear that it's possible to call compare on an Int.

When Scala encounters a call to a method that does not exist on the object it
is called on, it checks to see if there are any implicit conversions defined for
that kind of object.

This implicit conversion, called intWrapper, transforms an Int into a
runtime.RichInt. It takes an Int argument called x, and passes it to the
constructor for runtime.RichInt. The new runtime.RichInt is returned to the call
site. RichInt does support compare, so Scala is able to call compare on the
newly-minted RichInt without complaint.

The one additional thing you need to know about Scala before you look at the
Scalathon source is that a method called apply in Scala is comparable to
__call__ in Python. When Scala encounters zero or more arguments
flanked by parentheses following an object identifier, Scala invokes that
object's apply method and passes the arguments between the parentheses
to apply.

What do you think happens if the object does not support the apply method?
If the object does not support the apply method, Scala looks for an implicit
conversion, and executes the implicit conversion if one is found.

 34

trait Scalathon {

 val jep = new Jep()

 implicit def sym2Method[R](sym:Symbol): (Any*)=>R =
 new PyFunction[R](sym)

 class PyFunction[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*)={

 val paramObjects = params.map(_.asInstanceOf[AnyRef])
 val result = jep.invoke(sym2string(method),
 paramObjects : _*)
 result.asInstanceOf[R]

 }
 ...
 }
}

Hosting Python a la Spiewak

Here's a compacted version Scalathon source.

The first thing I want to point out is the implicit conversion defined for a Scala
symbol.

Recall that in the Spiewak-inspired version, a symbol ('py_python_age) was
used in lieu of a function identifier in the phrase 'py_python_age(9.0).

When Scala sees (9.0), which is an argument flanked by parentheses,
following the symbol 'py_python_age, it tries to call apply on the symbol
'py_python_age.

When Scala realizes that there is no apply method defined for the Symbol
class, Scala looks to see if there are any implicit conversations defined for
symbols -- and the implicit conversion defined in the Scalathon trait, which is
highlighted above, gets triggered.

The implicit conversion in the Scalathon trait converts a symbol into a
PyFunction object, just as the implicit conversion we looked at one the last
slide converts an Int into a RichInt. The sym2Function implicit conversion
passes the symbol (in this case 'py_python_age) to the constructor for ...

 35

trait Scalathon {

 val jep = new Jep()

 implicit def sym2Method[R](sym:Symbol): (Any*)=>R =
 new PyFunction[R](sym)

 class PyFunction[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*)={

 val paramObjects = params.map(_.asInstanceOf[AnyRef])
 val result = jep.invoke(sym2string(method),
 paramObjects : _*)
 result.asInstanceOf[R]

 }

 ...
 }
}

Hosting Python a la Spiewak

… a class called PyFunction, and the class definition for the PyFunction class
does ...

 36

trait Scalathon {

 val jep = new Jep()

 implicit def sym2Method[R](sym:Symbol): (Any*)=>R =
 new PyFunction[R](sym)

 class PyFunction[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*)={

 val paramObjects = params.map(_.asInstanceOf[AnyRef])
 val result = jep.invoke(sym2string(method),
 paramObjects : _*)
 result.asInstanceOf[R]

 }

 ...
 }
}

Hosting Python a la Spiewak

… include an implementation of apply.

The PyFunction class's apply implementation wraps a call to Jep#invoke.

Notice that the type specified for the params argument to apply is Any. We
have discussed AnyRef, but not Any. One of the differences between Java and
Scala is that in Scala, 9.0 is considered an object, but in Java, 9.0 is
considered a primitive. A method that expects Any arguments can take 9.0,
but 9.0 needs to be converted to an AnyRef before it can passed to a method
that expects AnyRef arguments.

The line highlighted in this slide takes care of converting the arguments to
Java objects by calling asInstanceOf[AnyRef] on each one. Recall that
Jep#invoke expects its arguments (that represent arguments to the Python
function) to be instances of java.lang.Object.

Like Python's map, Scala's map takes a function parameter and creates a new
collection comprised of the results of applying the passed-in function to
each element. The phrase _.asInstanceOf[AnyRef] is a syntactic shortcut
representing an anonymous function, with the underscore representing the
function parameter.

 37

trait Scalathon {

 val jep = new Jep()

 implicit def sym2Method[R](sym:Symbol): (Any*)=>R =
 new PyFunction[R](sym)

 class PyFunction[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*)={

 val paramObjects = params.map(_.asInstanceOf[AnyRef])
 val result = jep.invoke(sym2string(method),
 paramObjects : _*)
 result.asInstanceOf[R]

 }

 ...
 }
}

Hosting Python a la Spiewak

Here's where the name of the Python method and a variable number of
arguments are actually passed to Jep#invoke. I have inserted ellipses in
place of the sym2string code, which simply converts the symbol to text and
strips off the single quote.

 38

trait Scalathon {

 val jep = new Jep()

 implicit def sym2Method[R](sym:Symbol): (Any*)=>R =
 new PyFunction[R](sym)

 class PyFunction[R](method:Symbol) extends ((Any*)=>R) {

 override def apply(params:Any*)={

 val paramObjects = params.map(_.asInstanceOf[AnyRef])
 val result = jep.invoke(sym2string(method),
 paramObjects : _*)
 result.asInstanceOf[R]

 }

 ...
 }
}

Hosting Python a la Spiewak

This last line of apply is what makes it possible to call round in the Spiewak
-inspired sample code without needing to do any typecasting.

How does the Scalathon trait know how to cast result (the return value of
Jep#invoke)?

Brackets denote a parameterized type in Scala. By virtue of Scala's type
inference system, the value of [R] is set to Float when the variable populated
by the return value of 'py_python_age(9.0) is cast as a Float as follows:

val pythonAge: Float.

 39

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val pythonAge: Float =

 println(pythonAge.round)

}

Scala Hosting Python: a la Spiewak

'py_python_age(9.0)

Now that we've stepped through the source for the Scalathon trait, I wanted
to give you another look at how to use the Spiewak-inspired JEPP wrapper.

 40

Enhancing Hosting with applyDynamic

In this next series of slides, we're going to look at a different way of wrapping
JEPP code.

This next JEPP wrapper is built around an experimental Scala feature: the
Dynamic trait, which supports the applyDynamic method.

The applyDynamic method is comparable to Python's __getattr__.

The ScalaDoc for the Dynamic explains that for an object x that mixes in the
Dynamic trait and a call to x.meth (args)that “is not natively supported by
x, it is rewritten to x.applyDynamic(“meth”, args).”

 41

Enhancing Hosting with applyDynamic

Tuple23 Blog
Scala's upcoming dynamic capabilities

Adam Rabung
http://www.tuple23.com/2011/02/scalas-upcoming-dynamic-capabilities.html

When I first learned about applyDynamic, I had an idea about how it could
be used for wrapping JEPP. I couldn't get it to work until I read Adam Rabung's
blog post “Scala's upcoming dynamic capabilities” which shows how
applyDynamic can be used to integrate Scala with JRuby.

So, hat tip to Adam Rabung.

 42

Python Micro-library

class PythonUtils:

def py_python_age(self, age):
 return age / 2.8

python_utils = PythonUtils()

python_utils.py

For this applyDynamic-based wrapper, I modified python_utils.py by
Adding a class definition for the PythonUtils class, making py_python_age
An instance method for the PythonUtils class, instantiating an instance of
PythonUtils, and assigning it to a variable called python_utils.

The cool thing about the applyDynamic-based JEPP wrapper is that it makes
it appear that when Scala is the host language and Python is the guest, you
can instantiate and call methods on an instance of a class defined in Python
code exactly as if it were a class defined natively in Scala.

 43

object PythonAge extends App {

 val pythonUtils = new PythonUtils

 val pythonAge: Float = pythonUtils.py_python_age(9.0)

 println(pythonAge.round)

}

Enhancing Hosting with applyDynamic

This example shows how the applyDynamic-based JEPP wrapper can be
used in a Scala program.

The highlighted lines of code serve to invoke py_python_age on an instance
of the Python class PythonUtils defined in python_utils.py. The
syntax is identical to the syntax for calling methods on an instance of a Scala
class!

In the next slide we'll start looking at the source code that is responsible for
this unobtrusive Scala\Python integration.

 44

class PythonUtils() extends scala.Dynamic {

 val jep = new Jep()
 jep.runScript("python_utils.py")

 def applyDynamic[R](name: String)(args: Any*) = {
 val plist = new Array[String](args.length)

 for (i <- 0 until args.length) {
 plist(i) =
 args(i) match{
 case s:String => "'" + s + "'"
 case _ => args(i).toString()
 }
 }
 val str = "python_utils." + name + "(" +

 plist.reduceLeft[String](_ + ", " + _) + ")"
 jep.getValue(str)

 }

}

Enhancing Hosting with applyDynamic

class PythonUtils:

 def py_python_age(self, age):
 return age / 2.8

python_utils = PythonUtils()

python_utils.py

Using the applyDyamic-based wrapper involves defining a Scala proxy class
that corresponds to the Python class you wish to access from a Scala program
and that mixes in the Dynamic trait. The Scala proxy class and the Python
class should have the same name. In this case, it's PythonUtils.

The Scala proxy class should encapsulate the Jep#runScript call that
interprets the Python file that contains the Python class definition and the
statement that assigns an instance of the Python class to a variable.

The Scala proxy class must mix in the Dynamic trait and implement
applyDyamic. You can't get a good look at how applyDyamic is
implemented in this slide, because it's grayed out and blocked by the
 python_utils.py source I'm displaying for reference. We'll focus on the
 applyDynamic source in the next slide.

But I do want to point out that there are no ellipses is this slide inserted as
placeholders. You're looking at the sum total of the Scala proxy class source!
Note that there is no definition for a method called py_python_age anywhere
in sight in the Scala source.

Because applyDynamic is implemented to support calls to arbitrary methods
on the Python-based PythonUtils class, the Scala proxy class definition does
not need to have individual wrapper methods for each of the Python-based
instance methods.

.

 45

Enhancing Hosting with applyDynamic

class PythonUtils() extends scala.Dynamic {

 val jep = new Jep()
 jep.runScript("python_utils.py")

 def applyDynamic[R](name: String)(args: Any*) = {
 val plist = new Array[String](args.length)

 for (i <- 0 until args.length) {
 plist(i) =
 args(i) match{
 case s:String => "'" + s + "'"
 case _ => args(i).toString()
 }
 }
 val str = "python_utils." + name + "(" +

 plist.reduceLeft[String](_ + ", " + _) + ")"
 jep.getValue(str).asInstanceOf[R]

 }

}

When a method that is not defined on the Scala proxy class is called on an
instance of that class, the method name is passed to applyDynamic via
the name parameter and the arguments are passed in via the args parameter.

The applyDynamic implementation in this Scala that acts as a proxy for
PythonUtils wraps Jep#getValue, which is similar to Jep#invoke, but
instead of taking a function name and a variable list of arguments as
parameters, it takes a string representing arbitrary Python source code as its
only argument. It passes this string to the Python/C API function
PyRun_String, which executes it.

The applyDynamic implementation tacks the supplied method name onto a
source code string that begins with “python_utils.” and then converts each
argument to a string, separates the arguments by commas and tacks on the
argument string flanked by parentheses...

 46

Enhancing Hosting with applyDynamic

class PythonUtils() extends scala.Dynamic {

 val jep = new Jep()
 jep.runScript("python_utils.py")

 def applyDynamic[R](name: String)(args: AnyRef*) = {
 val plist = new Array[String](args.length)

 for (i <- 0 until args.length) {
 plist(i) =
 args(i) match{
 case s:String => "'" + s + "'"
 case _ => args(i).toString()
 }
 }
 val str = "python_utils." + name + "(" +

 plist.reduceLeft[String](_ + ", " + _) + ")"
 jep.getValue(str).asInstanceOf[R]

 }
}

“python_utils.py_python_age(9.0)”

… to wind up with the source code in the balloon outlined in blue. This source
string calls python_age on the instance of the Python-based PythonUtils
class assigned to the python_utils variable in python_utils.py:

“python_utils.py_python_age(9.0).”

Because Jep#getValue can execute arbitrary Python source code, new
methods added to the Python-based PythonUtils class definition can be called
from within Scala programs without any changes to the Scala-based proxy
class.

As in the Spiewak-inspired wrapper, Scala's type inference policy is
responsible for determining the value of the applyDynamic type parameter
[R] – so that the return value of applyDynamic can be typecast based on
the type specified for the pythonAge variable, which, in this case, is Float.

:

 47

object PythonAge extends App {

 val pythonUtils = new PythonUtils

 val pythonAge: Float = pythonUtils.py_python_age(9.0)

 println(pythonAge.round)

}

Enhancing Hosting with applyDynamic

Before moving on, I want to zoom back out of the
applyDynamic-based wrapper source for another look at the sample Scala
code that uses the wrapper.

 48

Python/Scala Integration via Jython

Jython
http://www.jython.org/

An approach to Python/Scala integration that is completely different than
JEPP-based Python/Scala interop is using Jython to interpret the Python
syntax.

Jython is an implementation of Python that runs on the JVM.

There are several different ways to embed Jython in Scala. The one I'm going
to show you uses the JSR 223-compliant scripting engine that Jython
supports.

A JSR (Java Service Request) is comparable to a PEP in the Python world.

JSR 223 defines a common hosting API for scripting languages that run on the
JVM, enabling developers to support multiple scripting languages with the
same host source code.

 49

Python Micro-library

def py_python_age(age):
 return age / 2.8

python_utils.py

For this next code sample, we'll use the original version of
python_utils.py, in which py_python_age is a function, not an instance
method defined for the PythonUtils class.

 50

Scala Hosting Jython: JSR 223

object PythonAge extends App {

 val scriptEngineManager = new ScriptEngineManager()
 val pyEngine =
 scriptEngineManager.getEngineByName("python")
 val engine =
 pyEngine.asInstanceOf[ScriptEngine with Invocable]

 engine.eval(new FileReader("python_utils.py"))

 val age = 9.0.asInstanceOf[AnyRef]
 val pythonAge = engine.invokeFunction("py_python_age",
 age)
 System.out.println(pythonAge.asInstanceOf[Double].round)

}

Here's a first look at sample Scala code that uses Jython's JSR 223-compliant
scripting engine.

I'll walk through this code in the next series of slides.

 51

Scala Hosting Jython: JSR 223

object PythonAge extends App {

 val scriptEngineManager = new ScriptEngineManager()
 val pyEngine =
 scriptEngineManager.getEngineByName("python")
 val engine =
 pyEngine.asInstanceOf[ScriptEngine with Invocable]

 engine.eval(new FileReader("python_utils.py"))

 val age = 9.0.asInstanceOf[AnyRef]
 val pythonAge = engine.invokeFunction("py_python_age",
 age)
 System.out.println(pythonAge.asInstanceOf[Double].round)

}

First, the Jython scripting engine is instantiated and configured. The JSR 223
scripting engine API offers methods for invoking functions written in the guest
language, as well as methods for executing arbitrary expressions written in the
guest languages.

 52

Scala Hosting Jython: JSR 223

object PythonAge extends App {

 val scriptEngineManager = new ScriptEngineManager()
 val pyEngine =
 scriptEngineManager.getEngineByName("python")
 val engine =
 pyEngine.asInstanceOf[ScriptEngine with Invocable]

 engine.eval(new FileReader("python_utils.py"))

 val age = 9.0.asInstanceOf[AnyRef]
 val pythonAge = engine.invokeFunction("py_python_age",
 age)
 System.out.println(pythonAge.asInstanceOf[Double].round)

}

ScriptEngine#eval executes the code in the script file wrapped by its
Reader argument, which is a FileReader (a subclass of Reader and a
Convenience Class that facilitates processing character streams).

 53

Scala Hosting Jython: JSR 223

object PythonAge extends App {

 val scriptEngineManager = new ScriptEngineManager()
 val pyEngine =
 scriptEngineManager.getEngineByName("python")
 val engine =
 pyEngine.asInstanceOf[ScriptEngine with Invocable]

 engine.eval(new FileReader("python_utils.py"))

 val age = 9.0.asInstanceOf[AnyRef]
 val pythonAge = engine.invokeFunction("py_python_age",
 age)
 System.out.println(pythonAge.asInstanceOf[Double].round)

}

ScriptEngine/Invocable#invokeFunction is comparable to
Jep#invoke: given the name of a function and a variable number of
arguments typecast as Java objects, it executes the function.

Where JEPP#invoke uses the Python/C API behind the scenes, Jython has
to jump through a few hoops in order to generate valid java bytecode for
a function defined using Python syntax.

On the next couple of slides I'll show you some excerpts from a Java .class file
generated by Jython so you can gain some insight into the Jython compilation
process.

 54

Implementing Python in Java: Jython
public class python_utils$py extends PyFunctionTable
 implements PyRunnable {

 static final PyString _0;
 static final PyFloat _1;
 static final PyCode f$0;
 ...
 public PyObject py_python_age$1(PyFrame paramPyFrame,
 ThreadState paramThreadState) {
 PyObject localPyObject = paramPyFrame.getlocal(0)._div(_1);
 ...
 return localPyObject;
 }
 ...
 public PyObject call_function(int paramInt, PyFrame
 paramPyFrame, ThreadState paramThreadState) {
 switch (paramInt) {
 case 0:
 return f$0(paramPyFrame, paramThreadState);
 case 1:
 }
 }
 }
}

Jython coerces python_utils into being a Java class called python_utils$py ...

 55

Implementing Python in Java: Jython
public class python_utils$py extends PyFunctionTable
 implements PyRunnable {

 static final PyString _0;
 static final PyFloat _1;
 static final PyCode f$0;
 ...
 public PyObject py_python_age$1(PyFrame paramPyFrame,
 ThreadState paramThreadState) {
 PyObject localPyObject = paramPyFrame.getlocal(0)._div(_1);
 ...
 return localPyObject;
 }
 ...
 public PyObject call_function(int paramInt, PyFrame
 paramPyFrame, ThreadState paramThreadState) {
 switch (paramInt) {
 case 0:
 return f$0(paramPyFrame, paramThreadState);
 case 1:
 }
 }
 }
}

… with an instance method called py_python_age$1 that returns a PyObject
and takes a PyFrame argument and a ThreadState argument.

Until relatively recently, running on the JVM meant that the return type and the
argument types needed to be specified at compile time. Jython deals with this
by generating the same signature (a PyObject return value, a PyFrame
argument and a ThreadState argument) for every method that represents a
function defined using Python syntax, like py_python_age.

Note that I used the current stable version of Jython, which, at this writing was
3.5.3b1. Future versions of Jython will take advantage of changes to the JVM
that make it a better platform for dynamic languages, which will improve
performance and simplify the codebase.

 56

Implementing Python in Java: Jython
public class python_utils$py extends PyFunctionTable
 implements PyRunnable {

 static final PyString _0;
 static final PyFloat _1;
 static final PyCode f$0;
 ...
 public PyObject py_python_age$1(PyFrame paramPyFrame,
 ThreadState paramThreadState) {
 PyObject localPyObject = paramPyFrame.getlocal(0)._div(_1);
 ...
 return localPyObject;
 }
 ...
 public PyObject call_function(int paramInt, PyFrame
 paramPyFrame, ThreadState paramThreadState) {
 switch (paramInt) {
 case 0:
 return f$0(paramPyFrame, paramThreadState);
 case 1:
 }
 }
 }
}

Here I have highlighted the Jython implementation of the “business logic” in
py_python_age, dividing the passed in age by 2.8 (typecast as a PyFloat
and represented by _1).

A PyFrame, such as paramPyFrame, stores information about and provides
access to global and local variables.

 57

Implementing Python in Java: Jython
public class python_utils$py extends PyFunctionTable
 implements PyRunnable {

 static final PyString _0;
 static final PyFloat _1;
 static final PyCode f$0;
 ...
 public PyObject py_python_age$1(PyFrame paramPyFrame,
 ThreadState paramThreadState) {
 PyObject localPyObject = paramPyFrame.getlocal(0)._div(_1);
 ...
 return localPyObject;
 }
 ...
 public PyObject call_function(int paramInt, PyFrame
 paramPyFrame, ThreadState paramThreadState) {
 switch (paramInt) {
 case 0:
 return f$0(paramPyFrame, paramThreadState);
 case 1:
 }
 }
 }
}

For each function defined in a Python-based module, Jython generates a
function called call_function that returns a PyObject and takes an int
argument, a PyFrame argument and a ThreadState argument. The int
argument represents a Jython-generated and assigned function ID#, and
call_function switches on this function ID#.

When a function defined in a Python module is invoked, Jython invokes
call_function on the instance of the class it generates to represent the
module (eg python_utils$py), which passes control to the specified function.

 58

object PythonAge extends App with Scalathon {

 pythonImport("python_utils")

 val age : Double = 'py_python_age(9.0)

 println(age.round)

}

Scala Hosting Jython a la Spiewak

object PythonAge extends App {

 val python_utils = new PythonUtils

 val pythonAge = python_utils.py_python_age(9.0)

 println(pythonAge.asInstanceOf[Double].round)

}

A la Spiewak

applyDynamic

The Jython 'Out of the Box' code can be wrapped in a Spiewak-inspired way
(as shown of the top of this slide) or using an applyDynamic-based wrapper
(as shown on the bottom).

In each case the implementation is very similar to the JEPP versions of these
wrappers I walked through, so I am not including the source for these
wrappers in this slide deck.

However, I did post the source for these Jython wrappers along with the rest of
the source covered in this talk at https://github.com/A-OK/Snakes-and-Ladders

 59

Python
hosting
Scala

In this next section, we'll look at examples of Python/Scala interop where
Python is the host language and Scala is the guest.

Just as I accessed functions from a Python micro-library in the “Scala hosting
Python” section, I'm going to using a Scala micro-library to represent a useful
library written in Scala.

And just as I used py_python_age to represent useful Python logic, I am
going to use a similarly pneumonic and symbolic function written in Scala.

 60

PyCon 2012 featured the first ever PyCon 5K Run.

The runners were not broken down by age group, but if they had been a
function like the core function in my Scala micro-library could have been used
to determine a particular participant's age group.

The function I wrote to represent useful Scala logic takes an age as a
parameter and returns one of three age groups: group 1 for those 19 and
under, group 2 for those between 20 and 55, and group 3 for those over 55.

What makes this a symbolic choice for a Scala micro-library?

It's an example of a step function, also known as a staircase function, and
“scala” means staircase in Italian.

 61

10 20 30 40 50 60 70 80 90

3
2
1

Hypothetical Age Groups for PyCon 5K:

Step/Staircase Function Example

AGE

AGE
GROUP

Because staircase function returns the same value for an interval of argument
values and jumps to the next interval for the next set of argument values, its
graph resembles a staircase.

 62Photo by Miles Sabin: http://www.flickr.com/photos/montpelier/3957416434/

The Scala logo is based on a staircase at the École Polytechnique Fédérale de
Lausanne, where Scala was created.

 63

Scala Function Definition

(age:Double) => {

 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
}

Here's my age group function “step” function using Scala anonymous function
syntax:

 64

Scala Function Definition

(age:Double) => {

 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
}

Arguments

The argument list is specified between parenthesis, and the name of each
argument is followed by a colon and the argument type.

 65

Scala Function Definition

(age:Double) => {

 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
}

A arrow separates the function body from argument list.

 66

Scala Function Definition

(age:Double) => {

 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
}

Function Body

The function body for this function is flanked by curly braces because it spans
multiple lines. The curly braces are not required for one-line functions.

 67

Scala Function Definition

scala> val ageGroupFunction = (age:Double) => {
 | if (age <= 19)
 | 1
 | else if (age <= 55)
 | 2
 | else
 | 3
 | }
ageGroupFunction: Double => Int = <function1>

Here I've assigned the function to the variable ageGroupFunction in the
Scala interactive console.

As a explained when we first looked at the Scala console, the Scala console
reports the type of each entered expression. The notation Double => Int
in the console output indicates that the entered function takes a Double as its
only argument and returns an Int. Specifying a return type for a function
(by following the argument list with a colon and the return type) is optional.

Scala infers the return type when it is not specified.

 68

scala> ageGroupFunction(9.0)
res0: Int = 1

scala> ageGroupFunction.apply(9.0)
res1: Int = 1

Scala Function Invocation: ()

As I've noted earlier, function invocation in Scala is similar to function
invocation in Python. You can follow the function name with any arguments
flanked by parentheses or you can use the apply method. Scala's apply is
comparable to Python's __call__.

You can see that if Scala (which is a 9-years old) had run in the PyCon 5K and
The participants had been placed into the hypothetical age groups I set up,
Scala would have been in Age Group #1.

 69

scala> import collection.immutable.ListMap

scala> val ages = ListMap("Python" -> 21.0,
 "Scala" -> 9.0)
ages:
scala.collection.immutable.ListMap[java.lang.String
 ,Double]
 = Map(Python -> 21.0, Scala -> 9.0)

scala> ages.mapValues(ageGroupFunction)
ages.mapValues(ageGroupFunction)
res0:
scala.collection.immutable.Map[java.lang.String,Int]
 = Map(Python -> 2, Scala -> 1)

Scala Functions as Arguments

In Scala, as in Python, a function can be passed to another function as an
argument.

In the simulated console in the next slide, I'll pass ageGroupFunction to
ListMap#mapValues. A ListMap is a data structure that holds key/value
pairs. ListMap#mapValues is comparable to map in Python: it returns a new
collection comprised of the results of passing each item in the collection to
the supplied function.

Before I can call ListMap#mapValues, I need an instance of ListMap. I
created one that that pairs “Python” and “Scala” with their ages, 21 and 9,
respectively – and I assigned it to ages.

 70

scala> import collection.immutable.ListMap

scala> val ages = ListMap("Python" -> 21.0,
 "Scala" -> 9.0)
ages:
scala.collection.immutable.ListMap[java.lang.String
 ,Double]
 = Map(Python -> 21.0, Scala -> 9.0)

scala> ages.mapValues(ageGroupFunction)
res0:
scala.collection.immutable.Map[java.lang.String,Int]
 = Map(Python -> 2, Scala -> 1)

Scala Functions as Arguments

As you can see, calling mapValues on ages yields a ListMap where the keys
are the language names and the values are the respective age groups they'd
land in had they been runners in the PyCon 5K.

Shortly, we'll look at how to access a ListMap defined in Scala from the Jython
interactive console, and I'll show you how to pass a function defined using
Python syntax to ListMap#mapValues.

 71

Scala Functions vs. Methods: Definitions

object ScalaUtils {

 def ageGroupMethod(age:Double) = {
 ageGroupFunction(age)
 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }

}

Before showing you how to access Scala code from Python, I would like to go
over a few aspects of Scala method syntax, particularly where it differs from
Scala function syntax.

I think it's important to be aware of some of the differences between Scala
methods and functions, so I decided to include both kinds of constructs in my
Scala micro-library. If you're going to be hosting Scala from Python, you're
probably going to need to know how to work with Scala methods as well as
Scala functions.

The ScalaUtils singleton object includes the ageGroupFunction we've been
looking at, and an ageGroupMethod instance method that does nothing
other than wrap ageGroupFunction. The main purpose of
ageGroupMethod is to help me demonstrate method syntax vs. function
syntax.

 72

Scala Functions vs. Methods: Definitions

object ScalaUtils {

 def ageGroupMethod(age:Double) = {
 ageGroupFunction(age)
 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }

}

A method definition begins with the keyword def.

An equals sign separates the method signature from the method body.

 73

scala> import ScalaUtils._

scala> ScalaUtils.ageGroupFunction(9.0)
res0: Int = 1

scala> ScalaUtils.ageGroupMethod(9.0)
res1: Int = 1

Scala Functions vs. Methods: Invocation

As noted earlier, you can call methods on or access variables on a singleton
object without instantiating it.

As you can see from this simulated Scala console session, you can invoke
ageGroupFunction and ageGroupMethod using standard dot notation.

 74

scala> ScalaUtils.ageGroupFunction.apply(9.0)
res2: Int = 1

scala> ScalaUtils.ageGroupMethod.apply(9.0)
<console>:13: error: missing arguments for method
ageGroupMethod in object ScalaUtils;

Scala Functions vs. Methods: apply()

We've seen that the logic in the body of a Scala function is executed when
apply is invoked on the function, and I've mentioned that apply is comparable
to Python's __call__.

As you can see here apply is not supported for methods. Trying to call apply
on ageGroupMethod yields error output in the console.

 75

Scala Functions vs. Methods

scala> ScalaUtils.ageGroupFunction
res3: Double => Int = <function1>

scala> ScalaUtils.ageGroupMethod
<console>:13: error: missing arguments for
method ageGroupMethod in object ScalaUtils;

A Scala function Is an object.

When you enter a function identifier in the console sans argument list, the
console has no problem evaluating the entered expression. Scala recognizes
that ScalaUtils.ageGroupFunction is a function that takes a Double and
returns an Int.

As you can see here, a Scala method is only considered valid as part of a
method invocation expression. When you try entering
ScalaUtils.ageGroupMethod sans argument list, the console complains.

 76

Scala Micro-library

 object ScalaUtils {

 def ageGroupMethod(age:Double):Int = {
 ageGroupFunction(age)
 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }

 val ages = ListMap("Python" -> 21.0,
 "Scala" -> 9.0)
 ...

 }

scala_utils.scala

Here is the Scala micro-library that represents useful Scala logic .

The ellipses following the ages ListMap indicates that there is additional code
in the micro-library. I'll discuss the additional library code a bit later.

For now, I will focus on ageGroupMethod, ageGroupFunction and the
ages ListMap.

I showed you to to use each of these in a Scala program. In the next group of
slides, I'll show you how to access these ...

 77

Python/Scala Integration via Jython

Jython
http://www.jython.org/

 ...from Jython.

In the Scala console, I showed you an example of passing a Scala function to
another Scala function. I passed ageGroupFunction to
ListMap#mapValues.

This next section is where I will show you how tight Scala/Jython integration
can be. I'll show you how to “scalafy” a function defined using Python syntax
so that it will be accepted as a valid argument to Scala functions that take
Scala functions as arguments.

Following the section on Jython hosting Scala, I will cover several projects that
make it possible for Python (ie the C-based implementation of Python) to host
Scala.

 78

Accessing Scala from Jython
>>> from ScalaUtils import *
>>>
>>> ageGroupMethod(21.0)
2

Many of the slides in this section will simulate a Jython interactive console
session. Entered text will be black. The prompt and any console output will be
blue.

A Scala singleton object can be imported using the same syntax you would
use to import a Python module, and as you can see, you can invoke
AgeGroupMethod (which is written in Scala) as if it were a function defined
using Python syntax.

If you import everything defined in ScalaUtils with from ScalaUtils
import *, you can then access Scala methods and instance variables in the
Jython console without prefixing them with “ScalaUtils”.

 79

Accessing Scala from Jython
>>> from ScalaUtils import *
>>>
>>> ageGroupMethod(21.0)
2
>>> ageGroupFunction(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: ageGroupFunction(): expected 0 args;
got 1
>>> ageGroupFunction()(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'ScalaUtils$$anonfun$1' object is not
callable

If you try to call a Scala function as if it were defined using Python syntax,
however, the console complains.

 80

Accessing Scala from Jython
>>> from ScalaUtils import *
>>>
>>> ageGroupMethod(21.0)
2
>>> ageGroupFunction(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: ageGroupFunction(): expected 0 args;
got 1
>>> ageGroupFunction()(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'ScalaUtils$$anonfun$1' object is not
callable

Before you can can invoke a Scala function from Jython, you need to suffix it
with parentheses – as if it were a class that needed to be instantiated.

The reason for this has to do with the fact that Jython is implemented in Java,
not Scala. To a large extent techniques for integrating Java and Jython work
with Scala out of the box. Sometimes some hacking is required to Scala and
Jython to work together.

When you compile Scala source code that includes a function, the Scala
compiler creates a class with an apply method to represent the function. The
function body serves as the method body for generated apply method. Recall
that Scala's apply is comparable to Python's __call__, and that when you
follow a function name with an argument list in Scala, Scala invokes the apply
method on that function.

Jython recognizes that the class the Scala compiler generates represents a
function, but it does not automatically create an instance of the function the
way the Scala runtime would.

As you can see here, though, just following the function name with
parentheses and following the “instantiated” function object with an argument
list, yields console errors. Something else is required before you can use the
function.

 81

Accessing Scala from Jython
>>> from ScalaUtils import *
>>>
>>> ageGroupMethod(21.0)
2
>>> ageGroupFunction(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: ageGroupFunction(): expected 0 args;
got 1
>>> ageGroupFunction()(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'ScalaUtils$$anonfun$1' object is not
callable
>>> ageGroupFunction().apply(21.0)
2

To successfully invoke a function defined in Scala from Jython, you need to
append parentheses to the function identifier, and then call apply, passing
apply the argument list.

Scala will automatically call a function's apply method when it
sees an argument list adjacent to a function identifier, but since
Jython does not know it needs to do this, the developer needs to.

 82

Accessing Scala from Jython
>>> from ScalaUtils import *
>>>
>>> ageGroupMethod(21.0)
2
>>> ageGroupFunction(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: ageGroupFunction(): expected 0 args;
got 1
>>> ageGroupFunction()(21.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'ScalaUtils$$anonfun$1' object is not
callable
>>> ageGroupFunction().apply(21.0)
2
>>> ageGroupFunction = ageGroupFunction()

I like to assign the “instantiated” function to a variable with the same name as
the function to create the illusion that I'm able to use the function identifier
without the parentheses.

 83

Accessing Scala from Jython
>>> ages
<java function ages 0x3>
>>> ages = ages()
>>>
>>> ages
Map(Python -> 21.0, Scala -> 9.0)
>>>
>>> ages.mapValues(ageGroupFunction)
Map(Python -> 2, Scala -> 1)

Similarly, you can't call methods on the ages ListMap without ...

 84

Accessing Scala from Jython
>>> ages
<java function ages 0x3>
>>> ages = ages()
>>>
>>> ages
Map(Python -> 21.0, Scala -> 9.0)
>>>
>>> ages.mapValues(ageGroupFunction)
Map(Python -> 2, Scala -> 1)

… treating it like a class constructor and following it with parentheses.

The reason for this has to do with the way Scala handles ListMap declarations.

Just as I assigned ageGroupFunction() to AgeGroupFunction, I
assigned ages() to a variable called ages. This way I can call methods on the
ages ListMap without cluttering up each line of code that references
that ListMap with parentheses.

 85

Accessing Scala from Jython
>>> ages
<java function ages 0x3>
>>> ages = ages()
>>>
>>> ages
Map(Python -> 21.0, Scala -> 9.0)
>>>
>>> ages.mapValues(ageGroupFunction)
Map(Python -> 2, Scala -> 1)

You can see here that ages does, in fact, represents the ListMap defined in
the Scala micro-library.

 86

Accessing Scala from Jython
>>> ages
<java function ages 0x3>
>>> ages = ages()
>>>
>>> ages
Map(Python -> 21.0, Scala -> 9.0)
>>>
>>> ages.mapValues(ageGroupFunction)
Map(Python -> 2, Scala -> 1)

Here you can see how easy it is to call a function on a collection that was
defined in Scala and pass that function a function defined in Scala as an
argument – all from within the Jython console.

You can see that if Python and Scala had been runners in the PyCon 5K, and
the hypothetical age groups I had defined had been used, Python would have
been placed in Age Group #2, while Scala would been placed in Age Group
#1.

 87

Accessing Scala from Jython
>>> def python_age(age):
... return age / 2.8
...
>>>
>>> ages.mapValues(python_age)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1

Now let's see what happens when we try to pass a function defined using
Python syntax to ListMap#mapValues.

In this simulated console, I'm just defining the Jython function I want pass to
ListMap#mapValues,

Like the core function in my Python micro-library, it calculates an age in python
years.

 88

Accessing Scala from Jython
>>> def python_age(age):
... return age / 2.8
...
>>>
>>> ages.mapValues(python_age)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1

As it turns out, when I pass python_age to ListMap#mapValues...

 89

Accessing Scala from Jython
>>> def python_age(age):
... return age * 2.8
...
>>>
>>> ages.mapValues(python_age)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1

… there are errors in the Jython console.

And if you take a close look at the Jython output ...

 90

Accessing Scala from Jython
>>> def python_age(age):
... return age * 2.8
...
>>>
>>> ages.mapValues(python_age)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1

… you can see from the TypeError detail that ListMap#mapValues is
expecting something called a Function1, and that ListMap#mapValues has
determined that python_age does not fit the bill.

 91

Function1 is a Scala trait. Here's a portion of its ScalaDoc.

As I noted earlier, a Scala trait is conceptually related to both abstract base
classes and modules in the Python world.

A trait can include declarations for both abstract and concrete methods. A
Scala class that mixes in Function1 needs to provide an implementation for ...

 92

… apply, Function1's only abstract method.

I explained earlier that when you compile Scala source code that includes a
function, the Scala compiler creates a class with an apply method to
represent the function. If a function has one argument, Scala mixes the
Function1 trait into the generated class. If a function has two arguments, Scala
mixes in the Function2 trait. If a function has three arguments, Scala mixes in
the Function3 trait, etc. – up until 22 arguments. The Scala core source
includes a Function22 trait. Functions with more than 22 arguments are not
supported.

 93

Accessing Scala from Jython
>>> def python_age(age):
... return age * 2.8
...
>>>
>>> ages.mapValues(python_age)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1

Here's another look at the error the console spewed out.

How can we coerce python_age to be a Function1 so that
ListMap#mapValues won't choke on it?

 94

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

We can “scalafy” it!

In the next few slides, I'll step through function I wrote to scalafy a function
written using Python syntax.

Where the Scala compiler generates a class with an apply method to
represent a function, scalafy returns a “scalafied” version of the Python
function passed in as the argument, func.The apply implementation for the
“scalafied” version of func executes the logic in the body of func.

 95

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

1

“Scalafying” a function written with Python syntax involves subclassing the
 FunctionN trait with the correct arity.

ListMap#mapValues will recognize a subclass of Function1 as a Function1.

The first step, highlighted here, is to determine the arity of the function written
with Python syntax, using the inspect module.

 96

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

“Function1”

Once the arity is determined, you can easily determine the name of the trait to
subclass. In this case, since the arity of python_age is 1, the trait that needs
to be subclassed is “Function1”.

Once you have derived the trait name, you can obtain the trait itself using
getattr,

 97

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

Then the derived FunctionN trait can be used as the superclass in the
signature for a local class that provides a concrete implementation of apply.

 98

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

The apply implementationfor the class local to scalafy uses __call__ to
invoke the function passed to scalafy as its func argument (which is
python_age, in this case).

 99

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

The FunctionN subclass that wraps the function passed to scalafy
also needs to implement __call__ – otherwise it will not be recognized as
being callable by Jython.

Like the apply implementation for the FunctionN subclass, the __call__
implementation invokes func, the function passed to scalafy as an
argument.

 100

Scalafying a Python Function
import scala
import inspect

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])

 superclass_trait_name = "Function%d" % num_args

 superclass_trait = getattr(scala,
 superclass_trait_name)

 class ScalafiedFunction(superclass_trait):

 def apply(self,*args):
 return func.__call__(*args)

 def __call__(self, *args, **kwargs):
 return func.__call__(*args)

 return ScalafiedFunction()

The scalafy function returns an instance of the class that subclasses the
FunctionN trait and implements apply.

 101

>>> def python_age(age):
... return age / 2.8
...
>>>
>>> ages.mapValues(python_age)
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> ages.mapValues(python_age)
Map(Python -> 7.500000000000001,
 Scala -> 3.2142857142857144)

Scalafying a Python Function

If I've named the file containing scalafy “scalathon.py” (one of the many
ways to combine “Scala” and “Python” that I use as module names in this
Slide deck), I can import it using the statement I highlighted in this
simulated Jython console session.

 102

>>> def python_age(age):
... return age / 2.8
...
>>>
>>> ages.mapValues(python_age)
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> ages.mapValues(python_age)
Map(Python -> 7.500000000000001,
 Scala -> 3.2142857142857144)

Scalafying a Python Function

The highlighted code here “scalafies” python_age by passing it to scalafy
and assigns the “scalafied” version of python_age to
scalafied_python_age.

 103

>>> def python_age(age):
... return age / 2.8
...
>>>
>>> ages.mapValues(python_age)
TypeError: mapValues(): 1st arg can't be coerced
to scala.Function1
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> ages.mapValues(scalafied_python_age)
Map(Python -> 7.500000000000001,
 Scala -> 3.2142857142857144)

Scalafying a Python Function

As you can see, scalafy did the trick. Passing scalafied_python_age to
ListMap#mapValues works.

Instead of a TypeError, the console output shows a ListMap with programming
languages names as keys and the ages of the languages – in python years –
as the values.

ListMap#mapValues invokes the function it is passed by calling apply on
that function for each value in the ListMap.

 104

ListMap#mapValues is only interested in the FunctionN's apply method.

It is not concerned with the methods that the FunctionN
trait provides concrete implementations for: andThen, compose and
ToString.

The next set of slides focuses on determining what happens when you pass a
function defined using Python syntax to a Scala function that calls one of
FunctionN's concrete methods.

 105

def
andT

hen

returns a new function:

(f andThen g)(x) == g(f(x))

Function1#andThen is the FunctionN concrete method I will use in my
examples.

If you call Function1#andThen on a function called f and pass in a function
called g, Function1#andThen will return a new function that takes a single
argument does the following
in the following order:
1. invokes f
2. invokes g using the return value of f as the argument to g

Before I show you what happens when you try to work with Scala code that
calls Function1#andThen in the Jython console, I'll show you how
Function1#andThen works in a sample Scala program.

 106

Scala Micro-library
 object ScalaUtils {

 def rAGFF(reptileAgeFunction:(Double)=>Double) = {

 reptileAgeFunction.andThen(ageGroupFunction)

 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }
 ...
}

scala_utils.scala

reptileAgeGroupFunctionFactory

Earlier I mentioned that there was an additional method in ScalaUtils that I
would cover later in the presentation.

The method is reptileAgeGroupFunctionFactory, which takes a
function as an argument and calls Function1#andThen on the supplied
function.

Because “reptileAgeGroupFunctionFactory” takes up too much space on a
slide, I'll use the abbreviation “rAGFF” in the code samples on the slides. In the
notes, I'll still use refer to this method as “reptileAgeGroupFunctionFactory”.

In the next few slides, I'll explain how reptileAgeGroupFunctionFactory
works.

 107

Scala Micro-library
 object ScalaUtils {

 def rAGFF(reptileAgeFunction:(Double)=>Double) = {

 reptileAgeFunction.andThen(ageGroupFunction)

 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }
 ...
}

scala_utils.scala

The notation (Double)=>Double indicates that
reptileAgeGroupFunctionFactory takes a single argument that is a
function that takes a Double as an argument and returns a Double.

 108

Scala Micro-library
 object ScalaUtils {

 def rAGFM(reptileAgeFunction:(Double)=>Double) = {

 reptileAgeFunction.andThen(ageGroupFunction)

 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }
 ...
}

scala_utils.scala

I circled the argument list for reptileAgeGroupFunctionFactory
to point out that its argument (a function that takes a Double and returns a
Double) is named reptileAgeFunction.

The reptileAgeGroupFunctionFactory method expects to be passed a
function like python_age that takes an age as an argument and converts the
age based on the average life span of a particular reptile.

 109

Scala Micro-library
 object ScalaUtils {

 def rAGFF(reptileAgeFunction:(Double)=>Double) = {

 reptileAgeFunction.andThen(ageGroupFunction)

 }

 val ageGroupFunction = (age:Double) => {
 if (age <= 19)
 1
 else if (age <= 55)
 2
 else
 3
 }
 ...
}

scala_utils.scala

The reptileAgeGroupFunctionFactory method calls
Function1#andThen on reptileAgeFunction using
ageGroupFunction as the argument to Function1#andThen.

The expression reptileAgeFunction.andThen(ageGroupFunction)
returns as new function that does the following, in order:
1. invokes reptileAgeFunction
2. invokes ageGroupFunction, using the return value of

reptileAgeFunction as the argument to ageGroupFunction

So, if you were to pass python_age to
reptileAgeGroupFunctionFactory, a new function would be created
 that would:
1. invoke python_age to determine the equivalent of the age passed in as an
argument in python years
2. invoke ageGroupFunction, using the python years equivalent of the age
as the argument to ageGroupFunction

Shortly I'll show you what happens when you try to pass the “scalafied” version
of python_age to reptileAgeGroupFunctionFactory. First I'll show
you a simulated Scala console session that features
ReptileAgeGroupFunctionFactory so you can get a feel for how
Function1#andThen works in Scala.

 110

Using Function1#andThen
scala> val lizardAgeFunction = (age:Double) => {
 | age / 28
 | }
lizardAgeFunction: Double => Double = <function1>

scala> val lizardAgeGroupFunction =
 ScalaUtils.rAGFC(lizardAgeFunction)
lizardAgeGroupFunction: Double => Int = <function1>

scala> val lizardAgeGroup = lizardAgeGroupFunction(9.0)
lizardAgeGroup: Int = 1

First I defined a Scala function that calculates a person's age in lizard years.

 111

Using Function1#andThen
scala> val lizardAgeFunction = (age:Double) => {
 | age / 28
 | }
lizardAgeFunction: Double => Double = <function1>

scala> val lizardAgeGroupFunction =
 ScalaUtils.rAGFF(lizardAgeFunction)
lizardAgeGroupFunction: Double => Int = <function1>

scala> val lizardAgeGroup = lizardAgeGroupFunction(9.0)
lizardAgeGroup: Int = 1

Then I pass it to ScalaUtils#reptileAgeGroupFunctionFactory to
create a new function that I assign to the variable
lizardAgeGroupFunction.

Notice that the console reports that the type of lizardAgeGroupFunction
is: Double => Int, which is the notation for a function that takes a Double
and returns an Int. This is the type you would expect for a function that takes
an age as a parameter and returns the age group number for the lizard years
equivalent of that age.

 112

Using Function1#andThen
scala> val lizardAgeFunction = (age:Double) => {
 | age / 28
 | }
lizardAgeFunction: Double => Double = <function1>

scala> val lizardAgeGroupFunction =
 ScalaUtils.rAGFF(lizardAgeFunction)
lizardAgeGroupFunction: Double => Int = <function1>

scala> val lizardAgeGroup = lizardAgeGroupFunction(9.0)
lizardAgeGroup: Int = 1

Finally, I use the newly minted function, lizardAgeGroupFunction to
determine which age group 9-year-old Scala would fall into if it was a lizard,
The result is 1.

Now I'll show you what happens when I try passing a function defined using
Python syntax to reptileAgeGroupFunctionFactory in a simulated
Jython console session.

 113

>>> from ScalaUtils import *
>>>
>>> ageGroupFunction = ageGroupFunction()
>>>
>>> ageGroupFunction.apply(21.0)
2
>>> def python_age(age):
... return age / 2.8
...
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> pythonAgeGroupFuncton = rAGFF(scalafied_python_age)
>>>
>>> pythonAgeGroupFuncton.apply(21.0)
>>> AttributeError: 'NoneType' object has no attribute
'apply
>>>
>>> pythonAgeGroupFuncton = rAGFC(scalafied_python_age)
>>> AttributeError: 'NoneType' object has no attribute
'apply'

Python Function as Scala Function?

So far so, good. There are no errors in the console output when I pass the
“scalafied” version of python_age to reptileAgeGroupFunctionFactory,
to create pythonAgeGroupFunction,

But...

 114

>>> from ScalaUtils import *
>>>
>>> ageGroupFunction = ageGroupFunction()
>>>
>>> ageGroupFunction.apply(21.0)
2
>>> def python_age(age):
... return age / 2.8
...
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> pythonAgeGroupFuncton = rAGFF(scalafied_python_age)
>>>
>>> pythonAgeGroupFuncton.apply(21.0)
>>> AttributeError: 'NoneType' object has no attribute
'apply
>>>
>>> pythonAgeGroupFuncton = rAGFC(scalafied_python_age)
>>> AttributeError: 'NoneType' object has no attribute
'apply'

Python Function as Scala Function?

… when I try to invoke apply on pythonAgeGroupFunction (recall that
reptileAgeGroupFunctionFactory returns a Scala function, and
that you need to call a Scala function's apply method in order to execute the
function logic from within Jython), the console displays error details.

The console indicates that pythonAgeGroupFunction is not a Scala
function, but rather that its type is “None”.

There's only one line in the method body for
reptileAgeGroupFunctionFactory, and it invokes Function1#andThen on
The function passed in as an argument (in this case scalafied_python_age). So
Clearly there's a problem with the Function1#andThen implementation on
scalafied_python_age.

You may well be wondering how there could be a problem with
scalafied_python_age's implementation of Function1#andThen if
 scalafied_python_age subclasses Function1 and the Function1 definition
includes a concrete implementation of Function1#andThen.

 115

Scalafying a Python Function

Code Commit Blog
Integrating Scala into JRuby

Daniel Spiewak
http://www.codecommit.com/blog/ruby/integrating-scala-into-jruby

Although it's about JRuby/Scala integration and not Jython, Daniel Spiewak's
blog post “Integrating Scala into JRuby” is very relevant as we consider the
question: What's wrong with scalafied_python_age's implementation of
Function1#andThen?

This blog post explains how Scala finesses Java's constructs in order to
support its trait semantics.

There's no concept of a trait in Java, so the Scala compiler generates a Java
interface that includes the trait's abstract method declarations and a Java class
that includes the trait's concrete method definitions.

A Java interface is similar to a Scala trait (or a Python abstract base class), but
it can only include abstract method declarations.

 116

Function1
(interface)

Function1$class
(class)

The Scala compiler gives the Java interface the same name as the trait (in this
case, “Function1”) and the generated class name is the trait name with
“$class” appended to It (include this case, Function1$class.

When a Scala class mixes in a trait, the Scala compiler generates a method
definition that invokes the corresponding method on the generated
<FunctionN>$class – for each concrete method defined in the trait.

Of course, Jython is Java-based, not Scala-based. Jython has access to the
compiled Scala, not the Scala source. So to Jython, “Function1” is a Java
interface, not a trait. When scalafied_python_age subclasses “Function1”
and Jython's programatic compiler generates Java bytecode to represent
scalafied_python_age, Jython does not know that scalafied_python_age's
Function1#andThen implementation needs to invoke the andThen
implementation on a class called “Function1$class”.

Faced with the similar problem, but with a JRuby class that subclasses
Function1, Spiewak suggests that in order to make a JRuby-based subclass of
Function1 behave like a Scala function, you need to derive the name of the
“<FunctionN>$class” that contains the trait's concrete implementations,
programatically capture the logic for each concrete implementation, and
dynamically generate implementations of the trait's concrete methods that
invoke that captured logic.

 117

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])
 superclass_trait_name = "Function%d" % num_args
 superclass_trait = getattr(scala, superclass_trait_name)

class ScalafiedFunction(superclass_trait):
… % implementation of apply and __call__

 scalafied_function = ScalafiedFunction()

 java_abstract_cl_name = "%s$class" % java_interface_name
 java_abstract_cl = getattr(scala, java_abstract_cl_name)

 method = getattr(java_abstract_cl, "andThen")

 logic = lambda *args: method.__call__(scalafied_function,
 *args)

 setattr(scalafied_function, "andThen", logic)

 return scalafied_function

Scalafying a Python Function

I modified scalafy based on Spiewak's blog entry.

Instead of returning an instance of ScalafiedFunction following the class
definition, I assign the newly minted ScalafiedFunction to
scalafied_function, ...

 118

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])
 superclass_trait_name = "Function%d" % num_args
 superclass_trait = getattr(scala, superclass_trait_name)

class ScalafiedFunction(superclass_trait):
… % implementation of apply and __call__

 scalafied_function = ScalafiedFunction()

 java_abstract_cl_name = "%s$class" % superclass_name
 java_abstract_cl = getattr(scala, java_abstract_cl_name)

 method = getattr(java_abstract_cl, "andThen")

 logic = lambda *args: method.__call__(scalafied_function,
 *args)

 setattr(scalafied_function, "andThen", logic)

 return scalafied_function

“Function1$class”

Scalafying a Python Function

… derive the “<FunctionN>$class” based on the arity of the function defined
using Python syntax, which is “Function1$class” in this case and then …

 119

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])
 superclass_trait_name = "Function%d" % num_args
 superclass_trait = getattr(scala, superclass_trait_name)

class ScalafiedFunction(superclass_trait):
… % implementation of apply and __call__

 scalafied_function = ScalafiedFunction()

 java_abstract_cl_name = "%s$class" % superclass_name
 java_abstract_cl = getattr(scala, java_abstract_cl_name)

 method = getattr(java_abstract_cl, "andThen")

 logic = lambda *args: method.__call__(scalafied_function,
 *args)

 setattr(scalafied_function, "andThen", logic)

 return scalafied_function

Scalafying a Python Function

… use Python-style introspection (getattr) to obtain a reference to the
concrete implementation of andThen, use a lambda expression to capture
logic that invokes that concrete implementation (via __call__), and use
setattr to add andThen to scalafied_function, binding it to the lambda
expression.

Incidentally, the ability to use Python-style introspection on Java objects, in
contrast to the more cumbersome Java reflection, is one of Jython's most
useful features.

 120

def scalafy(func):

 num_args = len(inspect.getargspec(func)[0])
 superclass_trait_name = "Function%d" % num_args
 superclass_trait = getattr(scala, superclass_trait_name)

class ScalafiedFunction(superclass_trait):
… % implementation of apply and __call__

 scalafied_function = ScalafiedFunction()

 java_abstract_cl_name = "%s$class" % superclass_name
 java_abstract_cl = getattr(scala, java_abstract_cl_name)

 method = getattr(java_abstract_cl, "andThen")

 logic = lambda *args: method.__call__(scalafied_function,
 *args)

 setattr(scalafied_function, "andThen", logic)

 return scalafied_function

Scalafying a Python Function

… use Python-style introspection (getattr) to obtain a reference to the concrete
implementation of andThen, use a lambda expression to capture logic that
Invokes that concrete implementation (via __call__), and use setattr to add
AndThen to scalafied_function, binding it to the lambda expression.

Incidentally, the ability to use Python-style introspection on Java objects is one
Of Jython's most useful features.

 121

>>> from ScalaUtils import *
>>>
>>> def python_age(age):
... return age / 2.8
...
>>>
>>> from scalathon import scalafy
>>>
>>> scalafied_python_age = scalafy(python_age)
>>>
>>> pythonAgeGroupFunction = rAGFC(scalafied_python_age)
>>>
>>> pythonAgeGroupFunction.apply(21.0)
>>> 1

Python Function as Scala Function?

In this Jython console session, you can see that passing the scalafied version
of python_age to reptileAgeGroupFunctionFactory
(pythonAgeGroupFunction) now yields a function that
behaves like a Scala function.

Given Python's age (21), pythonAgeGroupFunction
returns the age group Python would be assigned to if Python were a snake
instead of a programming language.

 122

Python Hosting Scala: JPype

JPype
Java Embedded Python

Steve Menard
http://jpype.sourceforge.net/

JPype is the first of 3 tools that enable you to invoke methods and functions
defined in Scala from Python (ie the C-based implementation of Python) that
I'm going to cover.

JPype leverages the Python/C interface (via C++) and JNI.

 123

>>> from jpype import *
>>> classpath=”scala-utils.jar:...”
>>> classpath=”scala-utils.jar:[scalalibs]”
>>> startJVM(getDefaultJVMPath(),
 "-Djava.class.path” + classpath)
>>>
>>> scala_utils =JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(3.0)
3

Python Hosting Scala: JPype

Every JPype console session (or Python script) begins with embedding a JVM
by calling startJVM, as shown here. Downstream, startJVM calls the JNI
function JNI_CreateJavaVM.

If you're not using JNI from within a Java program, you need to spin up a JVM
using JNI_CreateJavaVM, before you can make any other JNI calls.

The ellipses in the classpath, represent the path to scala-library.jar,
which is included in the standard Scala distribution.

 124

>>> from jpype import *
>>> classpath=”scala-utils.jar:...”
>>> classpath=”scala-utils.jar:[scalalibs]”
>>> startJVM(getDefaultJVMPath(),
 "-Djava.class.path” + classpath)
>>>
>>> scala_utils = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(3.0)
3

Python Hosting Scala: JPype

You can import a Scala object using JPype's JClass function, which ..

 125

Python Hosting Scala: JPype

>>> from jpype import *
>>>
>>> startJVM(getDefaultJVMPath(),
 "/path/to/scala-library.jar",
 "/path/to/scala-utils.jar")
>>>
>>> scala_utils = = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(3.0)
3

 scala_utils

_JavaClass

Class _JavaClass
 ...
 __getattribute__(self, name):
 try:
 r=object.__getattribute__(self,
 name)
 except AttributeError, ex :
 ...
 if isinstance(r,_jpype._JavaMethod):
 return _jpype._JavaBoundMethod(r,self)
 return r

returns an instance of _JavaClass, a Python class that wraps a Java (or Scala)
class to provide easy access to its methods and attributes.

In the _JavaClass definition, __getattribute__ ...

 126

Python Hosting Scala: JPype

>>> from jpype import *
>>>
>>> startJVM(getDefaultJVMPath(),
 "/path/to/scala-library.jar",
 "/path/to/scala-utils.jar")
>>>
>>> scala_utils = = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(3.0)
3

 scala_utils

_JavaClass

Class _JavaClass
 ...
 __getattribute__(self, name):
 try:
 r=object.__getattribute__(self,
 name)
 except AttributeError, ex :
 ...
 if isinstance(r,_jpype._JavaMethod):
 return _jpype._JavaBoundMethod(r,self)
 return r

...is implemented to use JNI to invoke a Java function on the Java class that
the _JavaClass instance wraps when dot notation is used to invoke a method
on an instance of _JavaClass. All of this handling works for Scala as well.

If an AttributeError is thrown, meaning there is not a Python-based definition
for the method called on the _JavaClass instance, JPype assumes the method
is defined in Java.

The line highlighted with an arrow shows the first step in accessing a method
defined in Java. It passes a reference to the Java method to
_JavaBoundMethod, which ...

 127

Python Hosting Scala: JPype

>>> from jpype import *
>>>
>>> startJVM(getDefaultJVMPath(),
 "/path/to/scala-library.jar",
 "/path/to/scala-utils.jar")
>>>
>>> scala_utils = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2
3

static PyTypeObject boundMethodClassType =
{

PyObject_HEAD_INIT(&PyType_Type)
0, /*ob_size*/
"JavaBoundMethod", /*tp_name*/

 ...
0, /*tp_hash */
PyJPBoundMethod::__call__, /*tp_call*/

 ...
}

… creates a Jpype boundMethodClassType object.

JPype defines the boundMethodClassType using the Python/C API's
PyTypeObject structure for defining custom types.

As indicated by the comments following each field in the inset showing an
excerpt from the boundMethodClassType definition, when you use the
PyTypeObject structure you can specify property values for the custom type,
as well as customized versions of methods standard Python objects support ...

 128

Python Hosting Scala: JPype

>>> from jpype import *
>>>
>>> startJVM(getDefaultJVMPath(),
 "/path/to/scala-library.jar",
 "/path/to/scala-utils.jar")
>>>
>>> scala_utils = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod (21.0)
>>> 2
3

static PyTypeObject boundMethodClassType =
{

PyObject_HEAD_INIT(&PyType_Type)
0, /*ob_size*/
"JavaBoundMethod", /*tp_name*/

 ...
0, /*tp_hash */
PyJPBoundMethod::__call__, /*tp_call*/

 ...
}

Python/C API

...like __call__.

The method tagged with “tp_call” is invoked when an argument list
(in this case, “(21.0)”) is tacked onto the method identifier (in this case,
“ageGroupMethod”).

The __call__ implementation, uses JNI to determine the number and type(s)
of argument(s) and based the number and type(s) of argument(s), makes the
corresponding JNI invocation call, which in this case is ...

 129

>>> from jpype import *
>>>
>>> startJVM(getDefaultJVMPath(),
 "/path/to/scala-library.jar",
 "/path/to/scala-utils.jar")
>>>
>>> scala_utils = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod (21.0)
>>> 2
3

Python Hosting Scala: JPypeHostRef* JPDoubleType::invokeStatic(jclass claz,
 jmethodID mth, jvalue* val)
{
 jvalue v;
 v.d=JPEnv::getJava()->CallStaticDoubleMethodA(claz,
 Mth,
 val);
 return asHostObject(v);
}

HostRef* JPIntType::invokeStatic(jclass claz,
 jmethodID mth, jvalue* val)
{
 jvalue v;
 v.i=JPEnv::getJava()->CallStaticIntMethodA(claz,
 Mth,
 val);
 return asHostObject(v);
}

Java Native Interface

CallStaticIntMethodA. The “A” stands for “arguments”. JNI also
provides CallStaticIntMethod for methods that return an Int, but don't
take any arguments.

 130

>>> from jpype import *
>>> classpath=”scala-utils.jar:[scalalibs]”
>>> classpath=”scala-utils.jar:[scalalibs]”
>>> startJVM(getDefaultJVMPath(),
 "-Djava.class.path” + classpath)
>>>
>>> scala_utils = JClass("ScalaUtils")
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2
>>> shutdownJVM()

Python Hosting Scala: JPype

Here's the complete console session, including the return value from the
ScalaUtils#ageGroupMethod call, 2, and the shutdownJVM call that
should conclude any console session or script that beging with startJVM.

 131

Python Hosting Scala

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

JEPP is another tool that enables you to write Python scripts that access Scala
code, and like JPype, it uses both JNI and the Python\C API.

Towards the beginning of this talk I showed you how JEPP could be used to
access a Python script from within a Scala program.

 132

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

For reference, here's that Scala example code that invokes py_python_age,
which is defined in a Python script.

 133

Python Hosting Scala: JEPP

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

from scalython import *

ageGroup=ScalaUtils.ageGroupMethod(21.0)
print(ageGroup + 1)

ages= ScalaUtils.ages()
print(ages.first().toString())

age_group.py

Here's age_group.py, a Python script that uses JEPP to access the
ageGroupMethod, which is defined in ScalaUtils in and written in Scala.

The reason for printing out ageGroup + 1, instead of just ageGroup is to
show that Python recognizes that the return value of the
ScalaUtils#ageGroupMethod call is an integer. As you will see, the
number 3, prints out when you run this script.

The reason for printing ages_first().toString() instead of just ages is
to show that you can easily call Scala-based methods, like, ListMap#first
on the ages ListMap from within a Python script.

 134

Python Hosting Scala: JEPP

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

from scalython import *

ageGroup=ScalaUtils.ageGroupMethod(21.0)
print(ageGroup + 1)

ages= ScalaUtils.ages()
print(ages.first().toString())

age_group.py

In the previous examples that access the ScalaUtils micro-library, I have not
needed to put ScalaUtils in a package.

But in order to access ScalaUtils using JEPP, I did need to modify
ScalaUtils.scala by adding the following statement to specify a package
for ScalaUtils: package scalython.

The name “scalython” yet another one of the permutations of “scala” and
“python” I came up with.

Once imported, I could call methods on ScalaUtils, like
ScalaUtils#ageGroupMethod, and access properties on ScalaUtils, from
within the Python script, using dot notation.

 135

Python Hosting Scala: JEPP

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

from scalython import *

ageGroup=ScalaUtils.ageGroupMethod(21.0)
print(ageGroup + 1)

ages= ScalaUtils.ages()
print(ages.first().toString())

$ java -classpath \
 jep.jar:scala_utils.jar:/scala-library.jar \
 jep.Run age_group.py

age_group.py

In this slide, I am including the command that runs this Python script to
highlight the biggest difference between JEPP and JPype: JEPP does not
embed a JVM into the Python script. Recall that in order to use JNI, you either
need to embed a JVM or make JNI API calls from within a Java program.

Running the age_group.py JEPP script requires the java command line
interpreter. You need to pass the name of the Python script …

 136

Python Hosting Scala: JEPP

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

from scalython import *

ageGroup=ScalaUtils.ageGroupMethod(21.0)
print(ageGroup + 1)

ages= ScalaUtils.ages()
print(ages.first().toString())

age_group.py

$ java -classpath \
 jep.jar:scala_utils.jar:/scala-library.jar \
 jep.Run age_group.py

to jep.Run, which is a Java program packaged with the JEPP distribution and
that calls the same Jep#runScript method...

 137

object PythonAge extends App {

 val jep = new Jep()

 jep.runScript("python_utils.py")

 val age = (9.0).asInstanceOf[AnyRef]

 val pythonAge = jep.invoke("py_python_age", age)

 println(pythonAge.asInstanceOf[Float].round)

}

Scala Hosting Python: JEPP

… I used to process python_utils.py in the example I used to show
how to access the Python micro-library from within a Scala program.

The jep.Run program does more than just wrap a call to
Jep#runScript, though. It supports an interactive option for running the
JEPP console and a swingApp option for scripting Swing applications.

 138

Python Hosting Scala: JEPP

JEPP
Java Embedded Python

Mike Johnson
http://jepp.sourceforge.net/

from scalython import *

ageGroup=ScalaUtils.ageGroupMethod(21.0)
print(ageGroup + 1)

ages= ScalaUtils.ages()
print(ages.first().toString())

age_group.py

$ java -classpath \
 jep.jar:scala_utils.jar:/scala-library.jar \
 jep.Run age_group.py
 3
 (Python,21.0)

This slide shows the output when age_group.py is passed to
jep.Run.

If you need to call Scala from within a Python script, JEPP enables you to do
all of your coding in Python – but your program ultimately would need to be
packaged as a Java program.

 139

Python Hosting Scala

JCC
PyLucene Development Team

http://lucene.apache.org/pylucene/jcc/index.html

The last tool that facilitates hosting Scala from Python that I'm going to cover is
JCC.

It was developed by the PyLucene team to enable Python developers to use
the Java-based search tool, Lucene.

With a single command on the command line, JCC:
1. generates C++ code that exposes a specified Java library via JNI
2. generates a Python\C++ extension that wraps the JNI code
3. generates and installs a Python package that provides access to the

specified Java library.

The next slide shows the single JCC command I used to generate a Python
package that wraps the ScalaUtils#age_group_method from my
Scala micro-library.

Although JCC works well with ScalaUtils#age_group_method, it's not
likely to work out-of-the-box for a real world Scala/Python integration project.
The micro-library does not include Scala features that diverge very much from
standard Java. I ran into code generation issues when I tried to use JCC to
generate a Python package that makes all the Scala core classes accessible
from Python. I included JCC in the slide deck because I thought its end-to-end
generation approach would interest polyglot programming enthusiasts.

 140

Python Hosting Scala: JCC

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

Here's the command I used to generate a Python package called “staircase”
that wraps my Scala micro-library, which I archived in a
Java .jar file called scala-utils.jar.

The --jar option is used to specify the Java library JCC should wrap. The
--python option and the --version option specify the name and version of
the Python package JCC should generate. The --build and --install options
indicate that the Python package should be installed. The --include option
is used to specify any files that should be included in the Java CLASSPATH for
the wrapped Java library.

 141

Python Hosting Scala: JCC

import staircase

staircase.initVM(staircase.CLASSPATH)

from staircase import ScalaUtils

print(ScalaUtils.ageGroupMethod(21.0) + 1)

age_group.py

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

Using the generated Python package is easy, as you can see from this script.

 142

Python Hosting Scala: JCC

import staircase

staircase.initVM(staircase.CLASSPATH)

from staircase import ScalaUtils

print(ScalaUtils.ageGroupMethod(21.0) + 1)

age_group.py

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

First, you can import the generated package, the way you would typically
import a Python module.

 143

Python Hosting Scala: JCC

import staircase

staircase.initVM(staircase.CLASSPATH)

from staircase import ScalaUtils

print(ScalaUtils.ageGroupMethod(21.0) + 1)

age_group.py

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

Next, you need to call initVM, passing it the generated CLASSPATH, as
shown here, substituting the name of your package for staircase.

 144

Python Hosting Scala: JCC

import staircase

staircase.initVM(staircase.CLASSPATH)

from staircase import ScalaUtils

print(ScalaUtils.ageGroupMethod(21.0) + 1)

age_group.py

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

Now that the JVM knows about everything on the CLASSPATH for the specified
Scala library, you can import your Scala library.

 145

Python Hosting Scala: JCC

import staircase

staircase.initVM(staircase.CLASSPATH)

from staircase import ScalaUtils

print(ScalaUtils.ageGroupMethod(21.0) + 1)

age_group.py

$ python -m jcc.__main__ --package java.lang
--include /path/to/scala-library.jar
--jar scala-utils.jar --python staircase
--version 0.5 --build --install

With the few lines of initialization out of the way, you can now call use the
Scala library from within Python.

 146

Python//Scala
Interop Via

Language-Neutral
Protocols

This last section of this talk focuses on two projects that wrap language-neutral
protocols.

 147

Python/Scala Integration: Py4J

Py4J
Barthelemy Dagenais

http://py4j.sourceforge.net/

Py4J, which uses Base64 over TCP for communication between a Java-based
server and a Python-based client.

It was not hard to build a Scala-based server in lieu of a Java-based server
using the the Py4J documentation.

Py4J is not language-neutral in the sense that it was built specifically for
Python and the JVM, but it wraps language-neutral protocols.

 148

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

This slide shows all of the server code, with the exception of the statement that
imports the ScalaUtils micro-library, which we walked through at the start of the
“Python Hosting Scala” section of this talk.

 149

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

A Py4J server name is typically made by appending “EntryPoint” to the name
of the custom library the server provides access to (in this case,
“ScalaUtils”).

The Py4J documentation typically refers to a Py4J server as an “EntryPoint”,
so I will use that convention for the remainder of the Py4J slides.

 150

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

Recall that the phrase extends App enables the code between the brackets
to run like a script.

 151

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

Every Py4J EntryPoint needs a method that returns a reference to the library it
provides access to, like getScalaUtils.

 152

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

A Py4J EntryPoint needs to instantiate a GatewayServer, which typically takes
a reference to the EntryPoint as an argument to its constructor. Since
ScalaUtilsEntryPoint is a Scala singleton object, it does not need to be
instantiated.

GatewayServer is a Py4J core class that encapsulates the setting up of
a TCP server, receiving Base64-encoded data over the TCP connection, and
sending back a response after invoking a function in the custom library the
EntryPoint provides access to (in this case ScalaUtils).

 153

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

GatewayServer#start instantiates a java.net.ServerSocket for listening for
requests from a Python client.

As you will see, the Python client sends a message via TCP in the form of a
method name and a collection of arguments. Py4J passes the method name
and arguments to its Java Reflection engine. Using Java Reflection, Py4J can
invoke a method, given the payload of the message: the name of the method
and any arguments.

 154

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.java_gateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

I'll use a simulated Python interactive console to show the Python client code.

The Python client needs a reference to ...

 155

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.java_gateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

...the EntryPoint, which can be obtained by accessing the entry_point
property of an instance of the Py4J core class, JavaGateway.

 156

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.java_gateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

The Python client can then obtain a reference to the custom Scala library that
the Entry Point provides access to.

In this example, the exposed library is assigned to scala_utils.

 157

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.java_gateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
3

JavaObject

scala_utils

Py4J wraps the exposed library reference in a JavaObject, a Python class
which ...

 158

>>> from py4j.JavaGateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J
class JavaObject

 def __getattr__(self, name):
 if name not in self._methods:
 ...
 self._methods[name] =
 JavaMember(name, self,
 self._target_id,
 self._gateway_client)

 return self._methods[name]

… overrides __getattr__ so that when the Python client tries to invoke one
of the custom Scala library methods using dot notation and the Python runtime
detects that the Python client is trying to invoke a method that is not defined as
an attribute on the JavaObject instance ...

 159

>>> from py4j.JavaGateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J
class JavaObject

 def __getattr__(self, name):
 if name not in self._methods:
 ...
 self._methods[name] =
 JavaMember(name, self,
 self._target_id,
 self._gateway_client)

 return self._methods[name]

… the specified custom library method is wrapped in a JavaMember, which ...

 160

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.JavaGateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
2

class JavaMember(object):

 def __call__(self, *args):
 ...
 command = CALL_COMMAND_NAME +\
 self.command_header +\
 args_command +\
 END_COMMAND_PART
 answer =
 self.gateway_client.send_command(command)
 return_value = get_return_value(answer,
 self.gateway_client,
 self.target_id,self.name)
 ...
 return return_value

… defines __call__ (which is invoked when the argument list is
tacked onto the ageGroupMethod) to encapsulate encoding the method
identifier and arguments and sending them to the EntryPoint via TCP.

 161

object ScalaUtilsEntryPoint extends App {

 def getScalaUtils() = ScalaUtils

 var server = new GatewayServer(ScalaUtilsEntryPoint)

 server.start()

}

Python/Scala Integration: Py4J

>>> from py4j.java_gateway import JavaGateway
>>>
>>> entry_point = JavaGateway().entry_point
>>>
>>> scala_utils = entry_point.getScalaUtils()
>>>
>>> scala_utils.ageGroupMethod(21.0)
>>> 2

Python's __getattr__ makes Py4J viable. Without it, it would not be
possible to support arbitrary method calls on a Scala library. Without it, you
would need to create an individual wrapper for each method, function and
property in the custom Scala library.

 162

Python/Scala Integration

Thrift
Facebook/Apache

http://thrift.apache.org/

Like Py4J, Thrift, wraps language-neutral transport and encapsulation
protocols (e.g. TCP, binary and JSON), but it's also language-neutral by virtue
of being based on an Interface Definition Language (IDL).

With Thrift, you use a generic IDL to specify elements of an interface, and
Thrift generates client and server code in any number of different languages.

Another example of an IDL-based project is Google's Protocol Buffers
(http://code.google.com/p/protobuf/)

 163

Python/Scala Integration

Scrooge
Scala generator for Thrift

Twitter
https://github.com/twitter/scrooge

Thrift is packaged with generators for Python, Java, C++, Erlang, PHP, Ruby,
Go, Ocaml and several other languages. It is not come with Scala generators.

I use the Java generator in my Scala/Python interop example.

If you need to integrate Python and Scala in the real world, the Java generator
may work for you, but it would be a good idea to take a look at Scrooge, a
Scala generator for Thrift written by the Twitter team.

I did not use Scrooge for my example for a couple of reasons:

1. You can get a certain distance for a Scala-based project using the Thrift
Java generators. Twitter used Thrift's Java generators in conjunction with
Scala in production prior to completing their Thrift Scala generator.

2. it is dependent on some external Twitter libraries and since I want to
focus on Thrift as an IDL-based approach to polyglot systems and not the
relative merits of the specific protocol and transport layer options packaged
with Thrift, I would rather show what Thrift does by default than take a detour
to cover Twitter's enhancements.

 164

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

This slide represents scala_utils.thrift, a Thrift IDL file that specifies
the interface for ScalaUtilsServer#ageGroupMethod, which I'm going to
back with code from the Scala micro-library I have used for many other
examples.

Based on this IDL file. Thrift will generate both server and client code for
Python as well as Java, but I'm only going to walk through the code for a
system that is comprised of a Scala-based server and a Python-based client.

 165

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

Thrift uses the namespace keyword differently for different languages.

Based on the lines highlighted, Thrift will use scala_utils_plumbing as
the package name for the Java classes and the directory name for the
generated Python code under gen-py.

I chose to use scala_utils_plumbing for both Python and the Scala
because the service my sample system is built on top of is written in Scala and
I think the generated Scala server code and the generated Python
client code serve a plumbing for the Scala service.

 166

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

Thrift will use the service name (in this case, ScalaUtilsService) as the
top-level Java class name for the generated outer class that will contain
sub-classes that encapsulate protocol and transport layer details. The same
name will be used as the module name for the corresponding Python module.

In this Thrift IDL file, i32 indicates that the ageGroupMethod will return a 32-
Bit integer.

In Thrift IDL, the argument list for a service must include the number and type
of argument(s). In this case 1:double is specified.

 167

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

$ thrift --gen java --gen py scala_utils.thrift

The arrow is pointing to options (--gen followed by languages specifiers) and
arguments (the name of the .thrift IDL file) passed to the thrift
command to trigger the Thrift generators for Java and Python.

 168

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

Here's one view of the files Thrift generates. The Python files are shown in a
 Wingware IDE project in the blue-bordered box. The Java sub-classes and
Interfaces are show in the JD=GUI Java class viewer in the red-bordered box.

 169

namespace java scala_utils_plumbing
namespace py scala_utils_plumbing

service ScalaUtilsService {

 i32 ageGroupMethod(1:double age)

}

Python/Scala Integration: Thrift

scala_utils.thrift

public class ScalaUtilsService {

 public interface Iface {

 public int ageGroupMethod(double age)
 throws org.apache.thrift.TException;

 }

}

The red box shows the source code for the Java interface Thrift generates for
the ageGroupMethod service, ScalaUtilsService.Iface.

As I explained when I talked about scalafying a Python function, a Java
interface is similar to a Scala trait (or a Python abstract base class), but it can
only include abstract method declarations. In the next slide I will show how the
Scala-based server I wrote uses the Iface Java Interface.

I left the IDL source in the background and used arrows to show how the
generated code reflects the IDL source.

 170

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

Here's a first look at the server I wrote in Scala. It uses a combination of Thrift
core classes and custom classes generated by Thrift in accordance with the
IDL file I created.

The runnable server, ScalaUtilsServer, references ScalaUtilsLogic, a Scala
class that provides an implementation for the interface I covered in the
previous slide, ScalaUtilsService.Iface.

 171

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

I represented the Scala source code for ageGroupMethod with a comment
since I went over it in detail at the beginning of the “Python Hosting Scala”
section of this slide deck, and I wanted to keep this slide uncluttered.

 172

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

This JavaDoc shows that I can use one of two Thrift core classes,
TNonblockingServerTransport or TServerSocket for client/server
communication.

I chose TServerSocket, and I am passing it the port number 1234.

 173

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

The “business logic” is encapsulated in the instance of ScalaUtilsLogic
assigned to the variable, logic.

 174

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

ScalaUtilsService.Processor is a Thrift-generated class.

 175

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

As you can see from this JavaDoc, you can choose to use a non-blocking
server, thread pool server (which leverages Java's concurrency management
features) or a basic server.

 176

Python/Scala Integration: Thrift

 class ScalaUtilsLogic extends ScalaUtilsService.Iface {
 def ageGroupMethod(age: Double): Int = {
 //Business Logic
 }
 }

 object ScalaUtilsServer extends Application {
 val serverTransport = new TServerSocket(1234)
 val logic = new ScalaUtilsLogic()
 val processor = new ScalaUtilsService.Processor(logic)
 val plumbing=new Args(serverTransport).processor(processor)
 val server = new TSimpleServer(plumbing)
 server.serve();
 }

scala_utils_server.scala

Scala-based Server

The code highlighted in this slide gives the server access to the
communication handlers and class that encapsulates the business logic, and
then starts the server.

 177

Python/Scala Integration: Thrift

 try:

 transport = TSocket.TSocket('localhost', 1234)

 transport = TTransport.TBufferedTransport(transport)

 protocol = TBinaryProtocol.TBinaryProtocol(transport)

 client = ScalaUtilsService.Client(protocol)

 transport.open()

 print client.ageGroupMethod(21.0)

 transport.close()

 except Thrift.TException, tx:

 print '%s' % (tx.message)

python_client.py

Python-based Client

Like the Scala-based server, the Python-based client is built on top of Python
code generated by Thrift and Thrift core classes.

 178

Python/Scala Integration: Thrift

 try:

 transport = TSocket.TSocket('localhost', 1234)

 transport = TTransport.TBufferedTransport(transport)

 protocol = TBinaryProtocol.TBinaryProtocol(transport)

 transport.open()

 client = ScalaUtilsService.Client(protocol)

 print client.ageGroupMethod(21.0)

 transport.close()

 except Thrift.TException, tx:

 print '%s' % (tx.message)

python_client.py

Python-based Client

The code fragment highlighted here uses the Thrift core classes from the
Python library that encapsulate the communication protocol and transport
layer.

I used the Thrift's binary protocol, but Thrift ships with additional encoding
options, including JSON.

 179

Python/Scala Integration: Thrift

 try:

 transport = TSocket.TSocket('localhost', 1234)

 transport = TTransport.TBufferedTransport(transport)

 protocol = TBinaryProtocol.TBinaryProtocol(transport)

 transport.open()

 client = ScalaUtilsService.Client(protocol)

 print client.ageGroupMethod(21.0)

 transport.close()

 except Thrift.TException, tx:

 print '%s' % (tx.message)

python_client.py

Python-based Client

ScalaUtilsService, which is highlighted in this slide, is a Thrift-generated
Python module and Client is a Thrift-generated class. The Python client can
call ageGroupMethod ageGroupMethod on an instance of
ScalaUtilsService.Client.

 180

Photo of Christo/Jeanne-Claude sketch by Andre Grossmann:
http://www.christojeanneclaude.net/projects/over-the-river

I hope this presentation has given you some new ideas about how basic
communication APIs can be wrapped to facilitate polyglot programming.

I'll wrap up with another image of epic wrapping – wrapping portions of the
Arkansas River. This has not been done yet. It's a Christo/Jeanne-Claude
sketch for a future project.

Source code for the examples is available at:
https://github.com/A-OK/Snakes-and-Ladders

 181

POLYGLOT PYTHON:
PYTHON/SCALA

INTEROP

ANDREA O. K. WRIGHT
Chariot Solutions

https://github.com/A-OK/Snakes-and-Ladders
aok@chariotsolutions.com

Source code for the examples is available at:
https://github.com/A-OK/Snakes-and-Ladders

