
futures&promises
in Scala 2.10

HEATHER MILLER
PHILIPP HALLER

Futures/Promises
Agenda

Execution Ctxs
tRY

common theme:

common theme:Pipelining

Pipelining?

List(92, 68, 100, 42, 56)

List(46, 34, 50, 21, 28)

map(x => x * 2)

filter(x => x < 50)

List(42)

Pipelining?

List(92, 68, 100, 42, 56)

List(46, 34, 50, 21, 28)

map(x => x * 2)

filter(x => x < 50)

List(42)

 val lst = List(46, 34, 50, 21, 28)
 lst.map(x => x*2).filter(x => x<50)

future&promise

scala.concurrent.

First, some Motivation

1Several important
libraries have their
own future/promise
implementation

1Several important
libraries have their
own future/promise
implementation

java.util.concurrent.
scala.actors.

com.twitter.util.

akka.dispatch.
scalaz.concurrent.
net.liftweb.actor.

FUTURE
FUTURE
FUTURE

FUTURE
PROMISE
LAFUTURE

1Several important
libraries have their
own future/promise
implementation

java.util.concurrent.
scala.actors.

com.twitter.util.

akka.dispatch.
scalaz.concurrent.
net.liftweb.actor.

FUTURE
FUTURE
FUTURE

FUTURE
PROMISE
LAFUTURE

This makes it clear that...

This makes it clear that...

futures are an important,
powerful abstraction

This makes it clear that...

futures are an important,
powerful abstraction

there’s fragmentation in

the scala ecosystem

no hope of interop!

 Furthermore...

 Furthermore...
Java futures neither
efficient nor composable2

 Furthermore...
Java futures neither
efficient nor composable2

 Furthermore...
Java futures neither
efficient nor composable2

 val lst = List(46, 34, 50, 21, 28)
 lst.map(x => x*2).filter(x => x<50)

 Furthermore...
Java futures neither
efficient nor composable2

Composability means:

 “dry”er code.
 More powerful code, build/compose rich

 functionality from smaller parts

 Furthermore...
Java futures neither
efficient nor composable2
we could make futures more
powerful, by taking advantage
of scala’s features

3

can be thought of as a single
concurrency abstraction

Futures&Promises

Future promise

can be thought of as a single
concurrency abstraction

Futures&Promises

Future

READ-MANY

promise

write-once

can be thought of as a single
concurrency abstraction

Futures&Promises

Future

READ-MANY

promise

write-once

Start async computation ✔
important ops

Assign result value
✔ Wait for result ✔ Obtain associated future object

✔

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

java.util.concurrent.future

java.util.concurrent.future

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

what we’d like to do instead

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

Async&NonBlocking

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

user doesn’t have to explicitly manage

callbacks. higher-order functions instead!

a promise p of type Promise[T]
can be completed in two ways...

Success&Failure

val result: T = ...
p.success(result)

Success

val exc = new Exception(“something went wrong”)
p.failure(exc)

Failure

Futures&Promises
Thread1 Thread2 Thread3

example

Futures&Promises

Promise

val p = Promise[Int]() // Thread 1

Thread1 Thread2 Thread3

(create promise)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

Thread1 Thread2 Thread3

(create promise)
(get reference to future)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

(create promise)
(get reference to future)
(register callback)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242

(create promise)
(get reference to future)
(register callback)

(write to promise)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242 Successful!

Console

(create promise)
(get reference to future)
(register callback)

(write to promise)

(execute callback)
// Thread

example

note: onSuccess callback executed even if f has

already been completed at time of registration

Combinators

 val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
 }

 val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

Combinators

 val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
 }

 val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

If filter fails: postBySmith completed with NoSuchElementException

If map fails: purchase is completed with unhandled exception

Combinators
Additional future-specific higher-
order functions have been introduced

def fallbackTo[U >: T](that: Future[U]): Future[U]

def firstCompletedOf[T](futures: Traversable[Future[T]]): Future[T]

def andThen(pf: PartialFunction[...]): Future[T]

Combinators
Additional future-specific higher-
order functions have been introduced

def fallbackTo[U >: T](that: Future[U]): Future[U]

def firstCompletedOf[T](futures: Traversable[Future[T]]): Future[T]

def andThen(pf: PartialFunction[...]): Future[T]

”falls back” to that future in case of failure

returns a future completed with result of first completed future

allows one to define a sequential execution over a chain of futures

are considered a
Which exceptions

Failure?
Q:

are considered a
Which exceptions

Failure?
only “nonfatal” ones

A:

Q:

NonFatal
can distinguish fatal exceptions from
nonfatal ones using pattern matching

try {
 // dangerous stuff
} catch {
 case NonFatal(e) => log.error(e, “Something not so bad”)
}

NonFatal
can distinguish fatal exceptions from
nonfatal ones using pattern matching

try {
 // dangerous stuff
} catch {
 case NonFatal(e) => log.error(e, “Something not so bad”)
}

Examples of fatal exceptions:

Does NonFatal match an exception you want to throw?
Then just rethrow it

VirtualMachineError, LinkageError, ThreadDeath, ...

context
Execution

scala.concurrent.

are needed by:
Threadpools...

futures

Actors

parallel collections

for executing callbacks and
function arguments

for executing message handlers,
scheduled tasks, etc.

for executing data-parallel operations

contexts
Execution

Scala 2.10 introduces

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

scala.concurrent package provides global ExecutionContext

Default ExecutionContext backed by the most recent fork join pool
(collaboration with Doug Lea, SUNY Oswego)

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable (fine-grained) selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable (fine-grained) selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

implicit ExecutionContexts allow sharing ecs

between frameworks

Enables flexible selection of execution policy

Future
the implementation

def map[S](f: T => S): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case Failure(t) => p failure t
 }
 } catch {
 case t: Throwable => p failure t
 }
 }
 p.future
}

Many operations implemented in terms of promises
simplified example

Future
the implementationREAL

def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]
 }
 } catch {
 case NonFatal(t) => p failure t
 }
 }

 p.future
}

The real implementation (a) adds an implicit ExecutionContext, (b)
avoids extra object creations, and (c) catches only non-fatal exceptions:

Promise
the implementation

Promise is the work horse of the futures implementation.

def complete(result: Try[T]): this.type =
 if (tryComplete(result)) this
 else throw new IllegalStateException("Promise already completed.")

A Promise[T] can be in one of two states:

COMPLETED

PENDING
No result has been written to the promise.
State represented using a list of callbacks (initially empty).

The promise has been assigned a successful result or exception.
State represented using an instance of Try[T]

Invoking Promise.complete triggers a transition from state Pending to Completed

A Promise can be completed at most once:

TRYscala.util.

And now onto
something
completely
different.

And now onto
something
completely
different.

not concurrent,

not asynchronous

Try
is a simple data container

Composable✔
Combinators for exceptions✔

Great for monadic-style exception handling.

Divorcing exception
handling from the stack.

Try
is a simple data container

sealed abstract class Try[+T]

final case class Success[+T](value: T) extends Try[T]

final case class Failure[+T](exception: Throwable)
 extends Try[T]

Try
is a simple data container

sealed abstract class Try[+T]

final case class Success[+T](value: T) extends Try[T]

final case class Failure[+T](exception: Throwable)
 extends Try[T]

Try
is a simple data container

sealed abstract class Try[+T]

final case class Success[+T](value: T) extends Try[T]

final case class Failure[+T](exception: Throwable)
 extends Try[T]

Trymethods on
Basic Ops

def get: T

get

Success

Failure

Returns value stored within Success

Throws exception stored within Failure

Trymethods on

def getOrElse[U >: T](default: => U): U

Success

Failure

Returns value stored within Success

Returns the given default argument if this is a Failure

getOrElse
Basic Ops

Trymethods on

def orElse[U >: T](default: => Try[U]): Try[U]

orElse

Success

Failure

Returns this Try if this is a Success

Returns the given default argument if this is a Failure

Basic Ops

Trymethods on

def map[U](f: T => U): Try[U]

map

Success

Failure

Applies the function f to the value from Success

Returns this if this is a Failure

monadic Ops

Trymethods on

def flatMap[U](f: T => Try[U]): Try[U]

flatMap

Success

Failure

Applies the function f to the value from Success

Returns this if this is a Failure

monadic Ops

Trymethods on

def filter(p: T => Boolean): Try[T]

filter

Success

Failure

Converts this to a Failure if predicate p not satisfied.

Returns this if this is a Failure

monadic Ops

Trymethods on

def recover[U >: T](f: PartialFunction[Throwable, U]): Try[U]

recover

Success

Failure

exception-specific Ops

Returns this if this is a Success

Applies function f if this is a Failure. (map on exptn)

Trymethods on

def recoverWith[U >: T](f: PartialFunction[Throwable, Try[U]]): Try[U]

recoverWith

Success

Failure

Returns this if this is a Success

Applies function f if this is a Failure. (flatMap on exptn)

exception-specific Ops

Trymethods on

def transform[U](s: T => Try[U], f: Throwable => Try[U]): Try[U]

transform

Success

Failure

Creates Try by applying function s if this is a Success

Creates Try by applying function f if this is a Failure

exception-specific Ops

TO BUILD
USING THESE Pipelines

TO BUILD
USING THESE Pipelines

Remember: not concurrent,

not asynchronous

TrySimple pipelining on
Example 1

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
 (x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
 } filter {
 (x: Account) => x.balance > 12000 // acct in good standing
 } map {
 (x: Account) =>
 val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
 updateAcct(toUpdate)
 }

TrySimple pipelining on
Example 1

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
 (x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
 } filter {
 (x: Account) => x.balance > 12000 // acct in good standing
 } map {
 (x: Account) =>
 val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
 updateAcct(toUpdate)
 }

GETACCT MIGHT FAIL

TrySimple pipelining on
Example 1

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
 (x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
 } filter {
 (x: Account) => x.balance > 12000 // acct in good standing
 } map {
 (x: Account) =>
 val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
 updateAcct(toUpdate)
 }

Predicate might not be satisfied

TrySimple pipelining on
Example 1

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
 (x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
 } filter {
 (x: Account) => x.balance > 12000 // acct in good standing
 } map {
 (x: Account) =>
 val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
 updateAcct(toUpdate)
 }

UPDATEACCT MIGHT FAIL

TrySimple pipelining on
Example 1

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
 (x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
 } filter {
 (x: Account) => x.balance > 12000 // acct in good standing
 } map {
 (x: Account) =>
 val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
 updateAcct(toUpdate)
 }

Eliminates nested try blocksbut how can we handle these failures?

TrySimple pipelining on
Example 2

...by using recoverWith, recover, or orElse

 case class Tweet(from: String, retweets: Int)

 val importantTweets = Try {
 server.getTweetList()
 } orElse {
 cachedTweetList.get
 } filter { twts =>
 val avgRetweet = twts.map(_.retweets).reduce(_ + _) / twts.length
 twts.exists(_.retweets > 2 * avgRetweet)
 } recover {
 case nose: NoSuchElementException => // handle individually
 case usop: ArithmeticException => // handle individually
 case other => // handle individually
 }

Try&Futurescombining

 case class Friend(name: String, age: String)

 val avgAge = Promise[Int]()

 val fut = future {
 // query a social network...
 List(Friend("Zoe", "25"), Friend("Jean", "27"), Friend("Paul", "3O"))
 }

 fut onComplete { tr =>
 // compute average age of friends
 val result = tr map {
 friends => friends.map(_.age.toInt).reduce(_ + _) / friends.length
 }
 avgAge complete result
 }

Credits

PHILIPP HALLER

ALEX PROKOPEC

VOJIN JOVANOVIC

VIKTOR KLANG MARIUS ERIKSEN

HEATHER MILLER

ROLAND KUHN

DOUG LEA

TYPESAFE

TYPESAFE

EPFL

EPFL

EPFL

TYPESAFE

SUNY

TWITTER

HAVOC PENNINGTON
TYPESAFE

questions?
http://docs.scala-lang.org/sips/pending/futures-promises.html

http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html

