=

TURES
PROMISES

in Scala 2.10

HEATHER MILLER
PP AL L ER

FUTURES/PROMISES
EXECUTION CTXS

TRY

COMMON THEME:

COMMON THEME:

Grpeling?

i iStd6 340 50Dl 28

map(x => X * 2)
LSt EI28 680 0@ 42565
filter(x => x < 50)

List(42)

val 1st = List (46, 34, 50, 21,

28)

Ist.map(x => x*2).fi1ter(x => x<50)

acalo.. concurvent.

FUTURE
PROMISE

FIRST, SOME

SEVERAL IMPORTANT
LIBRARIES HAVE THEIR
OWN FUTURE/PROMISE
IMPLEMENTATION

SEVERAL IMPORTANT
LIBRARIES HAVE THEIR
OWN FUTURE/PROMISE
IMPLEMENTATION

—— FUTURE
FUTURE PROMISE

Eﬂ¥3§§ LAFUTURE

SEVERAL IMPORTANT
LIBRARIES HAVE THEIR
OWN FUTURE/PROMISE

IMPLEMENTATION
-
FUTURE —o===0 # PROMISE

LAFUTURE

THIS MAKES IT CLEAR THAT...

THIS MAKES IT CLEAR THAT...

——>FUTURES ARE AN IMPORTANT,
POWERFUL ABSTRACTION

THIS MAKES IT CLEAR THAT...

——2 FUTURES ARE AN IMPORTANT.
POWERFUL ABSTRACTION

——==> THERE’S FRAGMENTATION IN
THE SCALA ECOSYSTEM

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

val 1st = List (46, 34, 50, 21,

28)

lst.map(x => x*2).filter(x => x<50)

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

-
COMPOSABILITY MEANS:

;“DRY”ER CODE.

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

WE COULD MAKE FUTURES MORE
POWERFUL, BY TAKING ADVANTAGE
OF SCALA’S FEATURES

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY ABSTRACTION

<—_,:

FUTURE PROMISE

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY ABSTRACTION

FUTURE PROMISE

CAN BE THOUGHT OF AS A SINGLE
CONCURRENCY ABSTRACTION

FUTURE PROMISE

IMPORTANT OPS

v/ Start async computation V4 Assign result value
V W ait for result V Obtain associated future object

FUTURE

O FUTURE

@ PROMISE Gm meonmgfu/ work
@ FUTURE WITH VALUE Hweoo/ Wolhnﬁ on the
e

result of another thread

FUTURE

O FUTURE

@ PROMISE Gm meonmgfu/ work
@ FUTURE WITH VALUE Hweoo/ Wolhnﬁ on the
e

result of another thread

QO FUTURE

@ PROMISE Gﬂm meonmgfu/ work
@ FUTURE WITH VALUE fhreao’ Wo/hnﬁ on the
e

result of another thread

®
ad‘y,m':& locking
GOAL Do not block current Hvreao/ w hile waiting

for result of future

/

®
W ehing
GOAL Do not block current f/vreao’ w hile waiting

\ for result of future

Catlbacks

=== REGISTER CALLBACK which is invoked

(osynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for manogeo/ b/ockmg)

®
W locking
GOAL Do not block current fhreoo’ w hile waiting

for result of future

Ga%ad’u

~====» REGISTER CALLBACK which is invoked

(asynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for momaged b/ocking)

USER DOESN’T HAVE TO EXPLICITLY MANAGE

|
CALLBACKS. HIGHER- -ORDER FUNCTIONS INSTEAD!

Success& Fuilure

A PROMISE p OF TYPE Promise[T]
CAN BE COMPLETED IN TWO WAYS...

val result: T = ...
p.success(result)

val exc = new (“something went wrong”)
p.failure(exc)

EXAMPLE

EXAMPLE

' Thread1

PROMISE
f val p = Promise[Int]() // Thread 1 (CREATE PROMISE)

EXAMPLE

Thread1

f FUTURE PROMISE

val p = Promise[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)

EXAMPLE

Thread1

val p
val f

onSuccess
callback

FUTURE

PROMISE

Promise[Int]() // Thread 1

p.future

f onSuccess {
case x: Int => println(“Successful!”)

}

// Thread 1

(CREATE PROMISE)
(GET REFERENCE TO FUTURE)
(REGISTER CALLBACK)

EXAMPLE

Thread1

« 42

onSuccess
callback
FUTURE PROMISE
val p = Promise[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f onSuccess { (REGISTER CALLBACK)

case x: Int => println(“Successful!”)

}
p.success(42) // Thread 1 (WRITE TO PROMISE)

EXAMPLE

Thread1 Thread3
< 42 Successful!
e

f FUTURE PROMISE CONSOLE
val p = Promise[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f 2:Succes; E // Thread 2 (REGISTER CALLBACK)

se x: Int => println(“Successful!” (EXECUTE CALLB

} // Thread ' L
p.success(42) // Thread 1 (WRITE TO PROMISE)

NOTE: onSuccess CALLBACK EXECUTED EVEN IF f HAS
ALREADY BEEN COMPLETED AT TIME OF REGISTRATION

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

def filter(pred: T => Boolean): Future[T]

val postBySmith: [1=

post.filter(_.author == “

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

IF MAP FAILS: purchose is comp|e+ed with unhandled exception

def filter(pred: T => Boolean): Future[T]

val postBySmith:

post.filter(_.author == “

IF FILTER FAILS: poerBySmiJrh comp|e+eo| with NoSuchE|emen+Excepﬁon

ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

def firstCompletedOf[T](futures:

def andThen(pf:

ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

"falls back” to that future in case of failure

def firstCompletedOf[T](futures:

returns a future Comp|e+ed with result of first Comp|e+eo| future

def andThen(pf:

allows one to define a sequen+i0| execution over a chain of futures

Q:

ARE CONSIVERED A Failure

Which excegtions

ONLY “NONFATAL” ONES

NonFatal

CAN DISTINGUISH FATAL EXCEPTIONS FROM
NONFATAL ONES USING PATTERN MATCHING

try {

} catch {

case NonFatal(e) => log.error(e, “Something not so bad”)

¥

NonFatal

CAN DISTINGUISH FATAL EXCEPTIONS FROM
NONFATAL ONES USING PATTERN MATCHING

try {

} catch {

case NonFatal(e) => log.error(e, “Something not so bad”)

¥

Exomp|es of fatal exceptions:
VirtualMachinekrror, LinkageError, ThreadDeath, ...

Does NonFatal match an exception you want to throw?
Then just rethrow it

wafa.cowmnf.
EXECUTION

CONTEXT

ARE NEEDED BY:

_) FUTURES for executing callbacks and

function argu menfts

q-> ACTORS for executing message handlers,
scheduled tasks, etc.

—> PARALLEL COLLECTIONS

for executing o’ofo—pam//e/ operations

EXECUTION
CONTEXTS

Scala 2.10 infroduces

Scala 2.10 infroduces

PROVIDE GLOBAL THREADPOOL AS
PLATFORM SERVICE TO BE SHARED BY

ALL PARALLEL FRAMEWORKS

-a-i-—-> scala.concurrent package provides global ExecutionContext

a—_> Default ExecutionContext backed |oy the most recent fork join poo|
(collaboration with Doug Leq, SUNY stego)

Asynchronous computations are executed on an
ExecutionContext which is provided imp|ici+|y.

def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

|m|o|iciJr parameters enable (Fine—groined) selection of the
ExecutionContext:

implicit val context: = customkExecutionContext

val fut2 = futl.filter(pred)
.map(fun)

def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

implicit val context: = customkExecutionContext
val fut2 = futl.filter(pred)
.map(fun)

THE IMPLEMENTATION

Momy operations im/o/ememLed in ferms of/oromises

def map[SI1(f: T => S): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case Failure(t) => p failure t

J
} catch {
case t: Throwable => p failure t
J
¥
p.future

}

THE RECY IMPLEMENTATION

The real implementation (a) adds an implicit ExecutionContext, (b)

avoids extra object creations, and (c) catches only non-fatal exceptions:

def map[S]1(f: T => S)(implicit executor: ExecutionContext): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]

¥
} catch {
case NonFatal(t) => p failure t
¥
¥
p.future

}

@W
THE IMPLEMENTATION

Promise is the work horse of the futures im/o/emenfafion.

A Promise[T] can be in one of two states:
PENDING

No result has been written to the promise.

State represenfeo/ using a list of callbacks (inih'a//y empty).

The promise has been assigneo’ a successful result or exce/oh'on.

State represem‘ed using an instance of Try[T]

|nvoking Promise.complete triggers a fransition from state Pending to Completed

A PROMISE CAN BE COMPLETED AT MOST ONCE:

def complete(result: [T]): this.type =
if (tryComplete(result)) this

else throw new ("Promise already completed.”)

scalotil.] IRY

AND NOW ONTO
SOMETHING
COMPLETELY
DIFFERENT.

AND NOW ONTO
SOMETHING

NOT CONCURRENT,
NOT ASYNCHRONOUS

M SIMPLE DATA CONTAINER

Great for monao’ic—sfy/e exception hano//ing.

/ Composable
V Combinators for exceptions

6 6 DIVORCING EXCEPTION
HANDLING FROM THE STACK.D ”

M SIMPLE DATA CONTAINER

sealed abstract class [+T]

final case class [+T](value: T) extends Try[T]

final case class [+T](exception:)
extends Try[T]

M SIMPLE DATA CONTAINER

sealed abstract class [+T]

final case class [+T](value: T) extends Try[T]

final case class [+T](exception:)
extends Try[T]

M SIMPLE DATA CONTAINER

sealed abstract class [+T]

final case class [+T](value: T) extends Try[T]

final case class [+T](exception:)
extends Try[T]

METHODS ONTp.y,
get

Returns value stored within Success

FAILURE

Throws exception stored within Failure

METHODS ONTny,
gefOrSlse

def getOrElse[U >: T](default: => U): U

Returns value stored within Success

FAILURE

Returns the given default argument if this is a Failure

METHODS ONTny,
onélse

def orElse[U >: T](default: => [UD): [U]

Returns this [ry if this is a Success

FAILURE

Returns the given default argument if this is a Failure

METHODS ONTp.y,

s

def map[U](f: T => U): [U]

App/ies the function f to the value from Success

FAILURE

Returns this if this is a Failure

METHODS ONTny,
ikl

def flatMapl[U]J(f: T => [UD): [U]

App/ies the function f to the value from Success

FAILURE

Returns this if this is a Failure

METHODS ONTny,
it

def filter(p: T =>

Convertsithis fo a'Failure if/oredicofe p not satisfied.

FAILURE

Returns this if this is a Failure

METHODS ONTny,

recowen

def recover[U >: T]1(f:

Returns this if this is a Success

FAILURE
/A\p/o/ies function f if this is a Failure. (map on expfn)

METHODS ONTny,
recower JUith

def recoverWith[U >: T](f: : [U]

Returns this if this is a Success

FAILURE
/A\p/o/ies function f if this is a Failure. (flatMap on expfn)

METHODS ONTny,

def transform[U](s: T =>

Creates [ry by app/ying function s if this is a Success

FAILURE
C reates Try by app/ying function f if this is a Failure

USING THESE
TO BUILD

USING THES
TO BUILD .

NOT CONCURRENT,
NOT ASYNCHRONOUS

SIMPLE PIPELINING ONT

/

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
(x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
} filter {
(x: Account) => x.balance > 12000
+ map {
(x: Account) =>
val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
updateAcct(toUpdate)

SIMPLE PIPELINING ONT
/

case class (acctNum: , balance: , lnterestRate:)

val withdrawal = 1500
val adjustment =02 4
val in € (getAcct())

val withdrawalResult = in maR {

(x:) => (x NacctNum, x.balance - withdrawal, x.interestRate)
} filter {
(x:) => x.balance > {2000
+ map {
(x:) =>
val toUpdate = (x.acctNum, x.balance, x.interestRate + adjustment)
updateAcct(toUpdate)

}

GETACCT MIGHT FAIL

SIMPLE PIPELINING ONT
/

case class (acctNum: , balance: , lnterestRate:)

val withdrawal = 1500
val adjustment = 0.4
val in = (getAcct())

val withdrawalResult = in map {

(x:) => (x.acctNum, x.balance - withdrawal, x.interestRate)
} filter {
(x:) =>(x.balance > 12000
+ map {
(x:) =>
val toUpdate = (x.acctNum, x.balance,\x.interestRate + adjustment)
updateAcct(toUpdate)

}

PREDICATE MIGHT NOT BE SATISFIED

SIMPLE PIPELINING ONT
/

case class (acctNum: , balance: , lnterestRate:)

val withdrawal = 1500
val adjustment = 0.4
val in = (getAcct())

val withdrawalResult = in map {

(x:) => (x.acctNum, x.balance - withdrawal, x.interestRate)
} filter {

(x:) => x.balance > 12000
; map {

(x:) =>

Veat—tobpdate = (x.acctNum, x.balance, x.interestRate + adjustment)

updateAcct (toUpdgtes

UPDATEACCT MIGHT FAIL

SIMPLE PIPELINING ONT
/

case class Account(acctNum: Int, balance: Double, interestRate: Double)

val withdrawal = 1500
val adjustment = 0.4
val in = Try(getAcct())

val withdrawalResult = in map {
(x: Account) => Account(x.acctNum, x.balance - withdrawal, x.interestRate)
} filter {
(x: Account) => x.balance > 12000
+ map {
(x: Account) =>
val toUpdate = Account(x.acctNum, x.balance, x.interestRate + adjustment)
updateAcct(toUpdate)

3

ELIMINATES NESTED TRY BLOCKS

SIMPLE PIPELINING ONT”y,

@WWW, necower, or onélse

case class (from: , retweets:)

val importantTweets = {
server.getTweetList()
} orElse {
cachedTweetList.get
} filter { twts =>
val avgRetweet = twts.map(_.retweets).reduce(_ + _) / twts.length
twts.exists(_.retweets > 2 *x avgRetweet)
} recover {
case nose: =>
case usop: =>
case other =>

comeinane | & Fufunes
4

case class GEEE , age:)
val avgAge = [Int]()
val fut = future {

((Hzoen’ H25H>’ (HJ’eanH’ H27H>’ (I’Pauln’ H30H>>
b

fut onComplete { tr =>

val result = tr map {
friends => friends.map(_.age.tolnt).reduce(_ + _) / friends.length

}

avgAge complete result

}

CREDITS

| TYPESAFE
W PHILIPP HALLER HEATHER MILLER (R
: TYPESAFE e <

ALEX PROKOPEC ROLAND KUHN ﬁ

EPFL TYPESAFE o

&N
L2

=
5

VOJIN JOVANOVIC DOUG LEA

EPFL SUNY M

HAVOC PENNINGTON e

TYPESAFE l

QUESTIONS'

th://docs.sca\o—\a ng.org/sips/pendmg/Fquu res-p romises.htm]

http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html

