Scaling out with
Akka Actors

J. Suereth

Agenda

The problem
Recap on what we have
Setting up a Cluster

Advanced Techniques

Who am 1I?

e Author Scala In Depth, sbt in Action

e Typesate Employee
e Big Nerd

s !
. 11S TEN NINJAS

The new web

EVENT DRIVEN
ASYNCHRONOUS
DATA-DRIVEN

BIG DATA

SINGLE PAGE DESIGN
COMPOSITION OF SERVICES
DISTRIBUTED

REACTIVE

The new web

EVENT DRIVEN
ASYNCHRONOUS
DATA-DRIVEN

BIG DATA

SINGLE PAGE DESIGN
COMPOSITION OF SERVICES
DISTRIBUTED

REACTIVE

The problem

I can't scale my website

The Hotel Search Business

¥ 1 7scala” (4,311) - joshuasu x | ion to Actors- ¢ x ' [] Inbox (23) - josh x4, My Drive - Google Drive 7 Twitter %\ P | Pandora One - Listen to & @ jsuereth/spring-akkzssai) %) I Spring Travel: Spring M\ x-
& € € | [localhost v =
[Aquarium Repair (@i Fluval Edge Upg... &3 Google Translat... [Tl Sites B [GUIDE] Howto ...] [JHowDoIUpdat... @ 1 Music [Ophthalmology... [Git-SVN (& typesafe [&&irpgS [Gimp v [other Bookmarks

Login

Welcome to Spring Travel

This sample demonstrates how to use Spring MVC and Spring Web Flow together with JavaServerPages (JSP) and Tiles.

The key features illustrated in this sample include:

¢ A declarative navigation model enabling full browser button support and dynamic navigation rules
+ A fine-grained state management model, including support for Cor il pe and
* Modularization of web application functionality by domain use case, illustrating project structure best-practices

 Spring Expression Language (SpEL) integration
Spring 3 formatting annotations @DateTimeFormat, @NumberFormat
Spring MVC custom namespace

Spring Security integration

Annotated POJO @Controllers for implementing RESTful user interactions.

Declarative page authoring with JSP, JSTL, and Spring MVC's form tag library

Page layout and composition with Apache Tiles

A JavaScript API for ing HTML with b i such as Ajax, validation, and effects.
A grid layout with Blueprint CSS

Exception handling support across all layers of the application

. irce Tool Suite , with support for graphical flow modeling and visualization

.

Start your Spring Travel experience

localhost:8080/travel/;jsessionid=kwq8syx8zeug

b
e
-
e
O
Q
e
o P
<
.
<

N,

DBMS

VAR

v

JoheT eje(

v |

JaAe adInIeg

v |

JoAe1 gop

\\

N,

Vi
/)]

1eherejeq | JeheTejeq

v 4 v 4

E\Am._ mo_zmm __ E\Am._ mo_Emm

Lm\nm._ o_m>> __ L_m\cm._ n_®>>

/N

D
e
-
e
&
<D
e
o P
<
&
<

Architecture

X

<
-

e
—>

\
\

<
>

e
i

-
>

e
—>

!

-
>

e
—

Architecture

X

<
-

e
—>

\
\

<
>

e
i

-
>

e
—>

!

-
>

e
—

SO

we built a Search system that

Finds hotels

Dynamically grows the search index

Caches previous query results for some time
Detects system overload and returns a cute
animal drawing

Our Current Architecture

Search Index ///\
earcn Inae akka

Web Layer
Service Layer
Data Layer

v
O
vy,
<
75

Let's dig into

the Search Index

Backend

e
-
@,
o
qv!
—
P
O
e
O
<
s
-
D
P
P
-
@,

19/Ae] aoinleg

Scatter Gather Search Index

e Split documents into Topics
o Create a "leaf" actor for each topic.
o Topic actors have local index

e (Categories
o Group topics into categories
o Group categories into more categories
O one root
o delegate queries to topics
o aggregate results

e Dynamically Expands
o Topics can decide to split into categories and sub-
topics

Front End

e Query Cache
o Caches top N query results
o (Notin sample code) Evicts stale cache
o Primary source of speedup!

e Throttler

o Records average query-response-time
o When in "failure" mode, prevents queries from
hitting the system and returns 'failure' response.

Let's remember....

Scatter Phase

Category 1 Category 2

Gather Phase

Category 1 Category 2

N
Pt
O
e
>
<
pr—
qu!
-
e
O
<

Throttling

— 1 Query

\
N Creates

N\
\
\

Interceptor

Statistics

Service

— 1 Query

Throttling

Statistics

Service

Interceptor

Query

Response

Throttling

Response

Statistics
Service

Statistics

Interceptor

Response

Throttling - Timeouts

-

\
N Creates

\
\
\
Interceptor
Statistics
Service

Throttling - Timeouts

— 1 Query
Query

Interceptor
Statistics
Service _
Timeout

Throttling - Timeouts

Interceptor

T~

Response

tatistics
Statistics SEIE
Service

Throttling - Timeouts

Response

Statistics
Service

Interceptor

Statistics

Throttling - Dropping

Queriles
=@

Throttling - Recovery

Timeout

Statistics
Service

What now?

We installed our Search Tree on a huge-

mongous server, and it's sucking up all 128GB
RAM, and all 24 cores!

.... It's time to scale out

DBMS

JaAe adIAIeg JaAe adIAIeg

v 4 v 4

JoAe1 gop JoAe1 gop

s iz

4 N=X

O / °

=

— 3

.m Jofe eje EE?._ eleq
= IRK v |
P

=

P

a

// \\

Now we want

Cluster Node

Spring Application

Akka Search
Index Node

| Riak

DBMS

Using

e Akka now supports automatic cluster

membership and notification
o Considered experimental in 2.1
o We're using 2.2-M2 for this talks

e Let's identify portions of our application and
how we can scale them out

Setting up an Akka Cluster

Your Build

libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % "2.2-M2",

"com.typesafe.akka" %% "akka-cluster-experimental" %
"2.2-M2")

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor-${scala.version}</artifactId>
<version>2.2-M2</version>

</dependency>

<dependency>
<groupId>com.typesafe.akka</groupIld>
<artifactId>akka-cluster-experimental-${scala.version}</artifactId>
<version>2.2-M2</version>

</dependency>

Application Configuration

: kzi t({)r { Actor references become cluster-ified
provider = "akka.cluster.ClusterActorRefProvider"
}
remote {
log-remote-lifecycle-events = off

netty.tcp {
hostname = "127.0.0.1"

port = 0

}

cluster {

seed-nodes = | Nodes we look for to join the cluster
"akka.tcp://ClusterSystem@127.0,0,1:2551"
"akka.tcp://ClusterSystem@127.0.0.1:2552"]

auto-down = on

Code

val system =
ActorSystem("ClusterSystem')

Backend

Cache

Front-End

IIIIIIIIIIIIII

e
-
2.
qw
—
Pt
O
e
>
<
<P
e
e
i
b
@
=
P
=
b
as

Step #1

Let's automatically generate throttle and cache on
every cluster node.

Creation code unchanged

system.actorOf (Props[FrontEnd]),
"search-front-end")

This runs on every cluster node where
we want a frontend

Registration on the FrontEnd

case class RegisterSearchTree (tree: ActorRef)

class FrontEnd extends Actor with ...{
def receive: Recelve = {
case RegisterSearchTree (tree) =>

// Now we create the cache + throttler

/ The backend will now tell the
frontend where it is, as each
frontend cluster member registers.

Create Cluster-Aware

Backend

class TreeTop .. extends Actor {

val searchTree: ActorRef = createSearchTree ()
val cluster = Cluster (context.system)

override def preStart(): Unit =
cluster.subscribe (self, classOf [MemberUp])

override def postStop(): Unit = A new "top" on the
cluster.unsubscribe (self) scatter—gather lree

registers for cluster

membership events

Create Cluster-Aware

Backend

def receive: Receive = {

case g: SearchQuery => searchTree.tell (g, sender)

case h: AddHotel => searchTree.tell (h, sender)

case MemberUp (member) => Notify the local "search-
val memberFrontEnd = front-end"” when a member
context.actorFor (joins the Cluster
RootActorPath (member.address) /

"user" / "search-front-end")
memberFrontEnd ! RegisterTree (self)

What we have now

cluster member #1 cluster member #2

fop RegisterTree .@

MemberUp -7 N

H [

Just one node?

MemberUp message is still fired, so front end
still finds the back end.

Recap #1

Can use Cluster membership notifications to
register important services with each other.

Step #2

Ensure the Search Tree can survive node failure

Cluster Singleton Pattern

Construct a Manager on every cluster node
Managers communicate and elect a "leader’
On leader failure, a new leader is chosen
Create local proxy actor who keeps track of
where the leader is.

® [ssues
o Bottleneck
o Delay in failure recovery (single point of failure)

See: http://doc.akka.io/docs/akka/snapshot/contrib/cluster-singleton.html

http://doc.akka.io/docs/akka/snapshot/contrib/cluster-singleton.html

Creating the Singleton

import akka.contrib.pattern.ClusterSingletonManager

system.actorOf (Props (
new ClusterSingletonManager (

singletonProps = => Props (new NodeManager ("top",
db)),

singletonName = "search-tree",

terminationMessage = PoisonPill,

role = None)),
name = "singleton")

Creating the Singleton

singletonProps = => Props(new NodeManager (" "top",
db)) .,

Creating the Singleton

NANT T T

singletonName = "search-tree",
terminationMessage = PoisonPill,

role = None)),

Creating the Proxy

class TreeTopProxy extends Actor {
val cluster = Cluster (context.system)

override def preStart(): Unit =
cluster.subscribe(self, classOf|[LeaderChanged])

override def postStop(): Unit =
cluster.unsubscribe (self)

var leaderAddress: Option[Address] = None

Creating the Proxy (part 2)

def receive = {
case state: CurrentClusterState =>
leaderAddress = state.leader
>

case LeaderChanged (leader)
leaderAddress = leader
case msg => singleton foreach { forward msg }
}
def singleton: Option[ActorRef] =
leaderAddress map (a =>
context.actorFor (RootActorPath (a) /

"user" / "singleton" / "search-tree"))

Visualizing

cluster member #1 cluster member #2

O% LeaderChanged

Visualizing

cluster member #1

Stop =

5 -

sses

cluster member #2

LeaderChanged

—
—
—
—

Step #3

Fragment the Search Tree

We still have scaling issues

cluster member #1 (LEADER) cluster member #2

Cache / Cache /
Throttle Throttle

cluster member #3

Cache /
O% Throttle

What are routers?

e Layer between ActorRef / Actors
e Route messages to underlying actors

e Non-Cluster Examples:

o Round Robin
Scatter Gather (first-found)
Consistent Hashing
Random

O
@)
O
o Broadcast

Tree with local routers

Clustered Router

Like local routers, but actor instances may be
on other nodes.

Clustered Router

props.withRouter (
ClusterRouterConfig (-
BroadcastRouter (1) 7
ClusterRouterSettings (.-
totalInstances = 3,/,/’/
maxInstancesPerNode = 1,
allowLocalRoutees = true,
useRole = None

_.- Local Router

_.- Cluster Router

Tree with remote routers

Category

- = = - - - r= -——I
- router 1 1 router 1 | router

=

Topic-1
(i-2)

Metrics based Routing

e Requires "sigar" dependency to enable

e Examples:
o AdaptiveLoadBalancingRouter
m heap
m cpu
m load
B Mmix

Recap

Clustered system design with Actors

Actor Systems

Partition state into small pieces
Communicate with immutable messages
Spawn new actors to track temporary state
Design as a Topology

Partition threads on the topology

Bubble errors on the topology

Clustered Actor Systems

e Partition Topology on nodes in the cluster
o Limit instances with routers
o Register with other clusters using cluster listeners
o Use roles to fragment actors across the cluster
o Keep "singleton" actors on the leader or role leader

e Avoid excessive inter-node messaging
o Use statistics based routing
o Fragment in 'large pieces'

e Allow time for cluster convergence and fault
detection

Key Point

Ensure your system can recover from failure

Resources

e http://egithub.com/jsuereth/intro-to-actors
Example code (clusters branch)

e http://akka.io
Akka concurrency framework for the JVM

http://github.com/jsuereth/intro-to-actors
http://github.com/jsuereth/intro-to-actors
http://akka.io
http://akka.io

Questions?

