
STREAM PROCESSING
PHILOSOPHY, CONCEPTS, AND TECHNOLOGIES

Dan Frank
df@bit.ly

@danielhfrank

mailto:df@bit.ly
mailto:df@bit.ly

What did I just sign up for?

• Stream processing as a tool for decomposition and modularity

What did I just sign up for?

• Stream processing as a tool for decomposition and modularity

• Stream processing composition building blocks

What did I just sign up for?

• Stream processing as a tool for decomposition and modularity

• Stream processing composition building blocks

• Stream processing in your distributed web application

What did I just sign up for?

• Stream processing as a tool for decomposition and modularity

• Stream processing composition building blocks

• Stream processing in your distributed web application

• NSQ, Bitly’s distributed messaging framework

What did I just sign up for?

• Stream processing as a tool for decomposition and modularity

• Stream processing composition building blocks

• Stream processing in your distributed web application

• NSQ, Bitly’s distributed messaging framework

• The future now: stream processing within your programs, and technologies to do it

What did I just sign up for?

STREAM PROCESSING?

Let’s say:

 “Near-realtime processing of sequential messages /
events”

A QUICK NOTE ON

• Hadoop is a dominant framework for doing batch tasks: tasks that operate on a
fully populated dataset and just need to be done “later”. Offline

• Stream processing is basically the opposite of this: operating as new data comes in,
computation happens online. No concept of “complete” dataset

• BUT, using the two as complementary data analysis components is very effective

Career Topology

Why Stream Processing?

Why Stream Processing?

REALTIME ANALYTICS!

Why Stream Processing?

REALTIME ANALYTICS!

There are better reasons!

CASE STUDY:
PROCESSING LINES IN A FILE

NAÏVE “ARCHITECTURE”

for line in lines:
new_line = do_something(line)
newer_line = do_something_else(new_line)
...
outputs.append(newest_line)

NAÏVE “ARCHITECTURE”

for line in lines:
new_line = do_something(line)
newer_line = do_something_else(new_line)
...
outputs.append(newest_line)

Composition of our functions is static, built into our program

NAÏVE “ARCHITECTURE”

for line in lines:
new_line = do_something(line)
newer_line = do_something_else(new_line)
...
outputs.append(newest_line)

Composition of our functions is static, built into our program
Error handling? Uhh

Unix Solution: Pipes

< lines do_something | do_something_else | ...

Unix Solution: Pipes

< lines do_something | do_something_else | ...

Composition happens outside the application code

Unix Solution: Pipes

< lines do_something | do_something_else | ...

Composition happens outside the application code

Errors are printed to stderr, execution continues. It’ll do...

ASIDE ON MODULARITY

ASIDE ON MODULARITY
• Modularity in code

• Logically simpler functions, more easily grokked + tested

• Smaller functions more easily reused throughout program, DRY

ASIDE ON MODULARITY
• Modularity in code

• Logically simpler functions, more easily grokked + tested

• Smaller functions more easily reused throughout program, DRY

• Modularity in architecture

• Fine grained scaling of individual components

• Isolate failures

• All of the above

BIG LEAGUES: TRENDRR STACK VERSION

def process_tweet(tweet):
get_sentiment()
get_location()
...

vs

SentimentProcessor LocationProcessor

“QUEUEREADER” applications consume
messages generated as outlined above

“QUEUEREADER” applications consume
messages generated as outlined above

• May modify messages and send further downstream

“QUEUEREADER” applications consume
messages generated as outlined above

• May modify messages and send further downstream

• May update some sort of database

“QUEUEREADER” applications consume
messages generated as outlined above

• May modify messages and send further downstream

• May update some sort of database

• Probably a good idea to do some archival as well

ARCHIVAL GOODIES

ARCHIVAL GOODIES

•Backfill new systems

ARCHIVAL GOODIES

•Backfill new systems

•Repair busted systems

ARCHIVAL GOODIES

•Backfill new systems

•Repair busted systems

•Ripe for batch processing

ARCHIVAL GOODIES

•Backfill new systems

•Repair busted systems

•Ripe for batch processing

•Include timestamps in your messages!

COMPOSITION BUILDING BLOCKS

Pubsub / Multicast Model

PSmsg

msg

msg
Producer

ConsumerA

ConsumerB

Messages duplicated to multiple consumers
Decouple independent stream operations

Qm2

m2

m1
Producer

ConsumerA

ConsumerA

m1

Distribution Model

Messages distributed among consumers
Horizontally scale workers to achieve desired throughput

Qm2
m2

m1

Producer

Consumer

Consumer

m1

Distribution Model

Fault Tolerance:
In face of consumer failure, other consumers (try to) pick up the slack

Qm1Producer

Consumer

Consumer

m2

Buffered Model

Buffering:
If consumers cannot keep up with producers,

the queue is able to hold onto messages so they
can be processed later

m3

MAKE IT WEBSCALE!!!
what does this have to do with my webapp?

MAKE IT WEBSCALE!!!
what does this have to do with my webapp?

Web requests are serialized as event messages

MAKE IT WEBSCALE!!!
what does this have to do with my webapp?

Web requests are serialized as event messages

Messages make up a stream that can be processed
elsewhere in your distributed application

App

❶

ASYNC DATA FLOW

incoming request

App

❶

❷

ASYNC DATA FLOW

incoming request

sync persist data

App

❶ ❸

❷

ASYNC DATA FLOW

incoming request

sync persist data

send response

App

❶

❹

❸

❷

ASYNC DATA FLOW

incoming request

sync persist data

send response

async queue message

App

❶

❹

❸

❷

ASYNC DATA FLOW

incoming request

sync persist data

send response

async queue message

Downstream processing decoupled
 from request / response

IT’S NICE BUT

• Stringing together queues and pubsubs implementing these models a pain

• Single conduit for messages a SPOF

• Single queue leads to rigid dependencies between services

TYPICAL (OLD) ARCHITECTURE

Host A

API

simplequeue

queuereader

TYPICAL (OLD) ARCHITECTURE

Host A

API

simplequeue

queuereader

Host B

pubsub

TYPICAL (OLD) ARCHITECTURE

Host A

API

simplequeue

queuereader

Host B

pubsub

Host C

simplequeue queuereaderps_to_http

TYPICAL (OLD) ARCHITECTURE

Host A

API

simplequeue

queuereader

Host B

pubsub

Host C

simplequeue queuereaderps_to_http

SPOF

SPOF
COMPLEX

TYPICAL (OLD) ARCHITECTURE

Host A

API

simplequeue

queuereader

Host B

pubsub

Host C

simplequeue queuereaderps_to_http

SPOF

SPOF
COMPLEX

ANARCHY

I WANT IT ALL

NSQ Core Features

NSQ Core Features

Queue daemon facilitates multicast,
distribution, and buffering

NSQ Core Features

Queue daemon facilitates multicast,
distribution, and buffering

Fully distributed and decentralized

NSQ Core Features

Queue daemon facilitates multicast,
distribution, and buffering

Lookup service simplifies configuration
and allows topology to change dynamically

Fully distributed and decentralized

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“clicks”

Topics

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

AAA

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

BBB

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

B

B

B

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

B

B

B

separate hosts

MULTICAST AND BUFFERING, YOU SAY?
NSQ CONCEPTS AND MESSAGE FLOW

• a topic is a distinct stream of messages (a
single nsqd instance can have multiple topics)

• a channel is an independent queue for a topic
(a topic can have multiple channels)

• consumers discover producers by querying
nsqlookupd (a discovery service for topics)

• topics and channels are created at runtime
(just start publishing/subscribing)

nsqd

“metrics”

Channels

“clicks”

Topics

“spam_analysis”

“archive”

Consumers

A

A

A

B

B

B

DISCOVERY
remove the need for publishers and consumers to know about each other

nsqlookupd

nsqd

producer

nsqlookupd

DISCOVERY
remove the need for publishers and consumers to know about each other

nsqlookupd

nsqd

❶ publish msg (specifying topic)
producer

nsqlookupd

DISCOVERY
remove the need for publishers and consumers to know about each other

nsqlookupd

nsqd

❶ publish msg (specifying topic)
producer

➋ IDENTIFY

persistent TCP connections

nsqlookupd

DISCOVERY
remove the need for publishers and consumers to know about each other

nsqlookupd

nsqd

❶ publish msg (specifying topic)
producer

➋ IDENTIFY

persistent TCP connections

nsqlookupd

➌ REGISTER (topic/channel)

DISCOVERY (CLIENT)
remove the need for publishers and consumers to know about each other

nsqlookupd nsqlookupd

consumer

DISCOVERY (CLIENT)
remove the need for publishers and consumers to know about each other

nsqlookupd nsqlookupd

consumer
➊ regularly poll for topic producers

HTTP requests

DISCOVERY (CLIENT)
remove the need for publishers and consumers to know about each other

nsqlookupd nsqlookupd

consumer
➊ regularly poll for topic producers
➋ connect to all producers

HTTP requests

ELIMINATE ALL THE SPOF

•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

ELIMINATE ALL THE SPOF

nsqd nsqdnsqd
•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

ELIMINATE ALL THE SPOF

nsqd nsqdnsqd

consumer

•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

ELIMINATE ALL THE SPOF

nsqd nsqdnsqd

consumer

•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

ELIMINATE ALL THE SPOF

nsqd nsqdnsqd

consumer consumer

•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

ELIMINATE ALL THE SPOF

nsqd nsqdnsqd

consumer consumer

•easily enable distributed and
decentralized topologies

•no brokers

•consumers connect to all producers

•messages are pushed to consumers

•nsqlookupd instances are independent
and require no coordination (run a
few for HA)

EXAMPLE NSQ ARCHITECTURE

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

EXAMPLE NSQ ARCHITECTURE

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

PUBLISH

EXAMPLE NSQ ARCHITECTURE

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

PUBLISH

REGISTER

EXAMPLE NSQ ARCHITECTURE

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

PUBLISH

REGISTER

DISCOVER

EXAMPLE NSQ ARCHITECTURE

NSQ
NSQD

API

consumer

NSQ
NSQD

API

NSQ
NSQD

API

consumer

nsqlookupd

nsqlookupd

PUBLISH

REGISTER

DISCOVER

SUBSCRIBE

A WORD ON ERRORS

•If a reader does not reply to confirm completion of a message within a timeout, the
message is requeued.

•Abandoned after configurable number of requeues

•Allows for recovery in face of transient problems without getting hung up on bad
messages

OTHER NSQ NICETIES

•Admin interface: server-side channel pausing, admin action notifications

•Configurable high-water mark on memory usage

•Ephemeral channels for stream sampling

github.com/bitly/nsq

DISTRIBUTED MESSAGING CAVEATS

DISTRIBUTED MESSAGING CAVEATS

•Messages in order? Fuggedaboudit!*

DISTRIBUTED MESSAGING CAVEATS

•Messages in order? Fuggedaboudit!*

•NSQ protocol guarantees delivery at least once - idempotence is a must! (_ids help)

DISTRIBUTED MESSAGING CAVEATS

•Messages in order? Fuggedaboudit!*

•NSQ protocol guarantees delivery at least once - idempotence is a must! (_ids help)

•Try not to be shocked by effortless recovery from node failure

DISTRIBUTED MESSAGING CAVEATS

•Messages in order? Fuggedaboudit!*

•NSQ protocol guarantees delivery at least once - idempotence is a must! (_ids help)

•Try not to be shocked by effortless recovery from node failure

*See http://bit.ly/life_beyond_transactions

http://bit.ly/life_beyond_transactions
http://bit.ly/life_beyond_transactions

STREAM PROCESSING:
WHY NOW?

STREAM PROCESSING:
WHY NOW?

•Cheap node distribution: EC2 etc

STREAM PROCESSING:
WHY NOW?

•Cheap node distribution: EC2 etc

•Moore’s law, Amdahl’s law, battered deceased equines...

STREAM PROCESSING:
WHY NOW?

•Cheap node distribution: EC2 etc

•Moore’s law, Amdahl’s law, battered deceased equines...

•Taking advantage of CPU parallelism the way forward for
program efficiency - good thing we just went over a paradigm
for distributing tasks among parallel workers!

INTRA-PROGRAM STREAM PROCESSING
IN THE WILD

EXAMPLE 1: GOLANG

•Channels allow synchronized passage of messages between two goroutines

•Goroutine independence (through synchronization) allows stream-like architecture:

•“Don’t communicate by sharing memory, share memory by communicating”

•Golang scheduler can parallelize between cores (GOMAXPROCS)

•Channels act like queues. Multicast not really an option

•Queuereader applications are a particularly good fit for goroutine concurrency

Q

m...

m1
ConsumerA

ConsumerA

 CPU 1

m2 m1m3 CPU 2

Goroutine 1

Goroutine 2

Goroutine 3

m1

m2

m3

•Within each consumer, messages
distributed among goroutines
•Goroutines, when possible, parallelized
across CPUs
•OK to have more goroutines than CPUs -
golang scheduler will give them CPU time
when another goroutine is idle (e.g. waiting
on network)

Golang Channel

EXAMPLE 2

WHAT’S THE DEAL WITH ZEROMQ?

ZMQ FEATURES
•Networking library that provides building blocks discussed earlier

•Unlike golang channels, does support many more complex patterns

•Transport layer abstracted out: same application can connect multiple threads or
multiple machines

•Can start by distributing among processes, and scale up to several boxes. Application
code doesn’t need to know about it!

•All the rage among the webscale set, but unclear what the hell is going on in the
community

zmq.bind(“inproc://example_socket”)

zmq.bind(“tcp://1.2.3.4:5678”)

Change transport by changing one string

ALMOST DONE I PROMISE

WHAT HAVE WE SEEN HERE?
•Stream processing paradigm is a great tool for writing composed, modular applications

•Fault tolerance and horizontal scalability come in the box

•Your web application is probably better suited to this design than you think

•NSQ is the tool we use to write distributed stream processing applications and it kicks
ass at it

•These same paradigms can aid in writing performant applications making use of
multicore computer architecture, so you should plan on seeing a lot more of this stuff
in the near future, whether you like it or not

THANKS!

Dan Frank
df@bit.ly

@danielhfrank

mailto:df@bit.ly
mailto:df@bit.ly

