
sfdc_ppt_corp_template_01_01_2012.ppt

The Fundamentals of JVM
Tuning
Charlie Hunt
Architect, Performance Engineering
Salesforce.com

In a Nutshell

 What you need to know about a modern JVM to be
effective at tuning it …

In a Nutshell

 What you need to know about a modern JVM to be
effective at tuning it … and …

In a Nutshell

 What you need to know about a modern JVM to be
effective at tuning it … and …

 What you need to know about a modern JVM to
realize good performance when writing Java code

Who is this guy?

•  Charlie Hunt
•  Architect of Performance Engineering at Salesforce.com
•  Former Java HotSpot VM Performance Architect at Oracle

•  20+ years of (general) performance experience
•  14 years of Java performance experience

•  Lead author of Java Performance, published Sept. 2011

Agenda

•  What you need to know about GC

•  What you need to know about JIT compilation

•  Tools to help you

Agenda

•  What you need to know about GC

•  What you need to know about JIT compilation

•  Tools to help you

Java HotSpot VM Heap Layout

Eden
 From

Survivor
 To

Survivor

 Old Generation
For older / longer living objects

 Permanent Generation
for VM & class meta-data

The Java Heap

Java HotSpot VM Heap Layout

Eden
 From

Survivor
 To

Survivor

 Old Generation
For older / longer living objects

 Permanent Generation
for VM & class meta-data

The Java Heap

New object
allocations

Java HotSpot VM Heap Layout

Eden
 From

Survivor
 To

Survivor

 Old Generation
For older / longer living objects

 Permanent Generation
for VM & class meta-data

The Java Heap

New object
allocations

Retention / aging of young
objects during minor GCs

Java HotSpot VM Heap Layout

Eden
 From

Survivor
 To

Survivor

 Old Generation
For older / longer living objects

 Permanent Generation
for VM & class meta-data

The Java Heap

New object
allocations

Retention / aging of young
objects during minor GCs

Promotions of longer
lived objects during
minor GCs

Important Concepts (1 of 4)

•  Frequency of minor GC is dictated by
•  Application object allocation rate
•  Size of the eden space

Important Concepts (1 of 4)

•  Frequency of minor GC is dictated by
•  Application object allocation rate
•  Size of the eden space

•  Frequency of object promotion into old generation is
dictated by
•  Frequency of minor GCs (how quickly objects age)
•  Size of the survivor spaces (large enough to age effectively)

•  Ideally promote as little as possible (more on this a bit later)

Important Concepts (2 of 4)

•  Object retention can degrade performance more than
object allocation

Important Concepts (2 of 4)

•  Object retention can degrade performance more than
object allocation
•  In other words, the longer an object lives, the greater the

impact on throughput, latency and footprint

Important Concepts (2 of 4)

•  Object retention can degrade performance more than
object allocation
•  In other words, the longer an object lives, the greater the

impact on throughput, latency and footprint

•  Objects retained for a longer period of time
•  Occupy available space in survivor spaces

•  May get promoted to old generation sooner than desired

•  May cause other retained objects to get promoted earlier

Important Concepts (2 of 4)

•  Object retention can degrade performance more than
object allocation
•  In other words, the longer an object lives, the greater the

impact on throughput, latency and footprint

•  Objects retained for a longer period of time
•  Occupy available space in survivor spaces

•  May get promoted to old generation sooner than desired

•  May cause other retained objects to get promoted earlier

•  GC only visits live objects
•  GC duration is a function of the number of live objects and

object graph complexity

Important Concepts (3 of 4)

•  Object allocation is very cheap!
•  10 CPU instructions in common case

Important Concepts (3 of 4)

•  Object allocation is very cheap!
•  10 CPU instructions in common case

•  Reclamation of new objects is also very cheap!
•  Remember, only live objects are visited in a GC

Important Concepts (3 of 4)

•  Object allocation is very cheap!
•  10 CPU instructions in common case

•  Reclamation of new objects is also very cheap!
•  Remember, only live objects are visited in a GC

•  Don’t be afraid to allocate short lived objects
•  … especially for immediate results

Important Concepts (3 of 4)

•  Object allocation is very cheap!
•  10 CPU instructions in common case

•  Reclamation of new objects is also very cheap!
•  Remember, only live objects are visited in a GC

•  Don’t be afraid to allocate short lived objects
•  … especially for immediate results

•  GCs love small immutable objects and short-lived
objects
•  … especially those that seldom survive a minor GC

Important Concepts (4 of 4)

•  But, don’t go overboard

Important Concepts (4 of 4)

•  But, don’t go overboard
•  Don’t do “needless” allocations

Important Concepts (4 of 4)

•  But, don’t go overboard
•  Don’t do “needless” allocations
•  … more frequent allocations means more frequent GCs

•  … more frequent GCs imply faster object aging
•  … faster promotions

•  … more frequent needs for possibly either; concurrent old
generation collection, or old generation compaction (i.e. full
GC) … or some kind of disruptive GC activity

Important Concepts (4 of 4)

•  But, don’t go overboard
•  Don’t do “needless” allocations
•  … more frequent allocations means more frequent GCs

•  … more frequent GCs imply faster object aging
•  … faster promotions

•  … more frequent needs for possibly either; concurrent old
generation collection, or old generation compaction (i.e. full
GC) … or some kind of disruptive GC activity

•  It is better to use short-lived immutable objects than
long-lived mutable objects

Ideal Situation

•  After application initialization phase, only experience
minor GCs and old generation growth is negligible
•  Ideally, never experience need for old generation collection

•  Minor GCs are (generally) the fastest GC

Advice on choosing a GC

•  Start with Parallel GC (-XX:+UseParallelOldGC)
•  Parallel GC offers the fastest minor GC times
•  If you can avoid full GCs, you’ll likely achieve the best throughput

and lowest latency

Advice on choosing a GC

•  Start with Parallel GC (-XX:+UseParallelOldGC)
•  Parallel GC offers the fastest minor GC times
•  If you can avoid full GCs, you’ll likely achieve the best throughput

and lowest latency

•  Move to CMS or G1 if needed (for old gen collections)
•  CMS minor GC times are slower due to promotion into “free lists”
•  CMS full GC avoided via old generation concurrent collection

•  G1 minor GC times are slower due to “remembered set”
overhead

•  G1 full GC avoided via concurrent collection and fragmentation
avoided by “partial” old generation collection

GC Friendly Programming (1 of 3)

•  Large objects
•  Expensive (in terms of time & CPU instructions) to allocate
•  Expensive to initialize (remember Java Spec ... object zeroing)

GC Friendly Programming (1 of 3)

•  Large objects
•  Expensive (in terms of time & CPU instructions) to allocate
•  Expensive to initialize (remember Java Spec ... object zeroing)

•  Large objects of different sizes can cause Java heap
fragmentation
•  A challenge for CMS, not so much so with ParallelGC or G1

GC Friendly Programming (1 of 3)

•  Large objects
•  Expensive (in terms of time & CPU instructions) to allocate
•  Expensive to initialize (remember Java Spec ... Object zeroing)

•  Large objects of different sizes can cause Java heap
fragmentation
•  A challenge for CMS, not so much so with ParallelGC or G1

•  Advice,
•  Avoid large object allocations if you can

•  Especially frequent large object allocations during application
“steady state”

GC Friendly Programming (2 of 3)

•  Data Structure Re-sizing
•  Avoid re-sizing of array backed collections / containers
•  Use the constructor with an explicit size for the backing array

GC Friendly Programming (2 of 3)

•  Data Structure Re-sizing
•  Avoid re-sizing of array backed collections / containers
•  Use the constructor with an explicit size for the backing array

•  Re-sizing leads to unnecessary object allocation
•  Also contributes to Java heap fragmentation

GC Friendly Programming (2 of 3)

•  Data Structure Re-sizing
•  Avoid re-sizing of array backed collections / containers
•  Use the constructor with an explicit size for the backing array

•  Re-sizing leads to unnecessary object allocation
•  Also contributes to Java heap fragmentation

•  Object pooling potential issues
•  Contributes to number of live objects visited during a GC

•  Remember GC duration is a function of live objects

•  Access to the pool requires some kind of locking
•  Frequent pool access may become a scalability issue

GC Friendly Programming (3 of 3)

•  Finalizers

GC Friendly Programming (3 of 3)

•  Finalizers
•  PPP-lleeeaa-ssseee don't do it!

GC Friendly Programming (3 of 3)

•  Finalizers
•  PPP-lleeeaa-ssseee don't do it!
•  Requires at least 2 GCs cycles and GC cycles are slower

•  If possible, add a method to explicitly free resources when done
with an object
•  Can’t explicitly free resources?

•  Use Reference Objects as an alternative
–  See JDK’s DirectByteBuffer.java implementation for an example use

GC Friendly Programming (3 of 3)

•  SoftReferences

GC Friendly Programming (3 of 3)

•  SoftReferences
•  PPP-lleeeaa-ssseee don't do it!

GC Friendly Programming (3 of 3)

•  SoftReferences
•  PPP-lleeeaa-ssseee don't do it!

•  Referent is cleared by GC
•  JVM GC’s implementation determines how aggressive they are

cleared
•  In other words, the JVM GC’s implementation really dictates the

degree of object retention

•  Remember the relationship to object retention
•  Higher object retention, longer GC pause times

•  Higher object retention, more frequent GC pauses

GC Friendly Programming (3 of 3)

•  SoftReferences
•  PPP-lleeeaa-ssseee don't do it!

•  Referent is cleared by GC
•  JVM GC’s implementation determines how aggressive they are

cleared
•  In other words, the JVM GC’s implementation really dictates the

degree of object retention

•  Remember the relationship between object retention
•  Higher object retention, longer GC pause times

•  Higher object retention, more frequent GC pauses

•  IMO, SoftReferences == bad idea!

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

 protected void finalize() { // do some cleanup }

}
class MyClass extends ClassWithFinalizer {

 private byte[] buffer = new byte[1024 * 1024 * 2];

 …

•  Object retention consequences of MyClass?

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

 protected void finalize() { // do some cleanup }

}

class MyClass extends ClassWithFinalizer {

 private byte[] buffer = new byte[1024 * 1024 * 2];

 …

•  Object retention consequences of MyClass?
•  At least 2 GC cycles to free the byte[] buffer

•  How to lower the object retention?

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

 protected void finalize() { // do some cleanup }

}

class MyClass extends ClassWithFinalizer {

 private byte[] buffer = new byte[1024 * 1024 * 2];

 …

•  Object retention consequences of MyClass?
•  At least 2 GC cycles to free the byte[] buffer

•  How to lower the object retention?
class MyClass {

 private ClassWithFinalizer classWithFinalizer;

 private byte[] buffer = new byte[1024 * 1024 * 2];

Subtle Object Retention (2 of 2)

•  What about inner classes?

Subtle Object Retention (2 of 2)

•  What about inner classes?
•  Remember that inner classes have an implicit reference to the

outer instance

•  Potentially can increase object retention

•  Again, increased object retention … more live objects at
GC time … increased GC duration

Fundamentals - Minor GCs

•  Minor GC Frequency – How often they occur
•  Dictated by object allocation rate and size of eden space
•  Higher allocation rate or smaller eden ⇒ more frequent minor GC

•  Lower allocation rate or larger eden ⇒ less frequent minor GC

Fundamentals - Minor GCs

•  Minor GC Frequency – How often they occur
•  Dictated by object allocation rate and size of eden space
•  Higher allocation rate or smaller eden ⇒ more frequent minor GC

•  Lower allocation rate or larger eden ⇒ less frequent minor GC

•  Minor GC Pause Time
•  Dictated (mostly) by # of live objects
•  Some deviations of course, number of reference objects, object

graph structure, number of promotions to old gen

Fundamentals – Full GC Frequency

•  Full GC Frequency – How often they occur
•  For Parallel GC (and Serial GC)

•  Dictated by promotion rate and size of old generation space

•  Higher promotion rate or smaller old gen ⇒ more frequent full GC

•  Lower promotion rate or larger old gen ⇒ less frequent full GC

Fundamentals – Full GC Frequency

•  Full GC Frequency – How often they occur
•  For Parallel GC (and Serial GC)

•  Dictated by promotion rate and size of old generation space

•  Higher promotion rate or smaller old gen ⇒ more frequent full GC

•  Lower promotion rate or larger old gen ⇒ less frequent full GC

•  For CMS & G1 – a bit more complex!
•  Dictated by promotion rate, time to execute a concurrent cycle and

when the concurrent cycle is initiated – potential for “losing the race”
•  Some differences between CMS & G1 concurrent cycles

•  Also for CMS, also dictated by frequency of old gen fragmentation, a
situation that requires old gen compaction via a full GC

•  G1 has shown to combat fragmentation very well

Fundamentals – Concurrent Cycle Frequency

•  For CMS & G1, Concurrent Cycle Frequency
•  Dictated by the promotion rate, size of old gen and when

concurrent cycle is initiated (a heap occupancy threshold)
•  CMS initiating threshold is a percent of old gen occupancy

•  G1 initiating threshold is a percent of the entire Java heap, not just
old gen occupancy

•  Remember concurrent cycles execute at the same time as your
application taking CPU from your application

Fundamentals – Full GC Pause Time

•  For Parallel GC (or Serial GC)
•  Dictated (mostly) by # of live objects
•  Some deviations of course, number of reference objects, object

graph structure, etc

Fundamentals – Full GC Pause Time

•  For CMS or G1
•  Almost always a very lengthy pause

•  Expect a much longer pause than Parallel Old GC’s full GC

•  Single threaded
•  CMS – in reaction to a promotion failure; “losing the race” (concurrent

cycle did not finish in time) or fragmentation (old generation requires
compaction)

•  G1 – in reaction to there not being enough space available to
evacuate live objects to an available region “to-space overflow”

•  May have to “undo” reference updates due to promotion failure or
to-space overflow – a time consuming operation

Agenda

•  What you need to know about GC

•  What you need to know about JIT compilation

•  Tools to help you

Important Concepts

•  Optimization decisions are made based on
•  Classes that have been loaded and code paths executed
•  JIT compiler does not have full knowledge of entire program

•  Only knows what has been classloaded and code paths executed

Important Concepts

•  Optimization decisions are made based on
•  Classes that have been loaded and code paths executed
•  JIT compiler does not have full knowledge of entire program

•  Only knows what has been classloaded and code paths executed
•  Hence, optimization decisions makes assumptions about how a

program has been executing – it knows nothing about what has
not been classloaded or executed

Important Concepts

•  Optimization decisions are made based on
•  Classes that have been loaded and code paths executed
•  JIT compiler does not have full knowledge of entire program

•  Only knows what has been classloaded and code paths executed
•  Hence, optimization decisions makes assumptions about how a

program has been executing – it knows nothing about what has
not been classloaded or executed

•  Assumptions may turn out (later) to be wrong … it must be to
“recover” which (may) limit the type(s) of optimization(s)

•  New classloading or code path … possible de-opt/re-opt

Inlining and Virtualization, Completing Forces

•  Greatest optimization impact realized from “method
inlining”
•  Virtualized methods are the biggest barrier to inlining

•  Good news … JIT compiler can de-virtualize methods if it only sees
1 implementation of a virtualized method … effectively makes it a
mono-morphic call

Inlining and Virtualization, Completing Forces

•  Greatest optimization impact realized from “method
inlining”
•  Virtualized methods are the biggest barrier to inlining

•  Good news … JIT compiler can de-virtualize methods if it only sees
1 implementation of a virtualized method … effectively makes it a
mono-morphic call

•  Bad news … if JIT compiler later discovers an additional
implementation it must de-optimize, re-optimize for 2nd
implementation … now we have a bi-morphic call

•  This type of de-opt & re-opt will likely lead to lesser peak
performance, especially true when / if you get to the 3rd
implementation because now its a mega-morphic call

Inlining and Virtualization, Completing Forces

•  Important point(s)
•  Discovery of additional implementations of virtualized methods

will slow down your application

•  A mega-morphic call can limit or inhibit inlining capabilities

Inlining and Virtualization, Completing Forces

•  Important point(s)
•  Discovery of additional implementations of virtualized methods

will slow down your application

•  A mega-morphic call can limit or inhibit inlining capabilities

•  How ‘bout writing “JIT Compiler Friendly Code” ?

Inlining and Virtualization, Completing Forces

•  Important point(s)
•  Discovery of additional implementations of virtualized methods

will slow down your application

•  A mega-morphic call can limit or inhibit inlining capabilities

•  How ‘bout writing “JIT Compiler Friendly Code” ?
•  Ahh, that's a premature optimization!

Inlining and Virtualization, Completing Forces

•  Important point(s)
•  Discovery of additional implementations of virtualized methods

will slow down your application

•  A mega-morphic call can limit or inhibit inlining capabilities

•  How ‘bout writing “JIT Compiler Friendly Code” ?
•  Ahh, that's a premature optimization!

•  Advice?

Inlining and Virtualization, Completing Forces

•  Important point(s)
•  Discovery of additional implementations of virtualized methods

will slow down your application

•  A mega-morphic call can limit or inhibit inlining capabilities

•  How ‘bout writing “JIT Compiler Friendly Code” ?
•  Ahh, that's a premature optimization!

•  Advice?
•  Write code in its most natural form, let the JIT compiler agonize

over how to best optimize it

•  Use tools to identify the problem areas and make code changes
as necessary

Code cache, the “hidden space”

Eden
 From

Survivor
 To

Survivor

 Old Generation
For older / longer living objects

 Permanent Generation
for VM & class meta-data

The Java Heap

Code cache : holds JIT compiled code

Code cache

•  Default size is 48 megabytes for HotSpot Server JVM
•  Increased to 96 megabytes for Java 8
•  32 megabytes in HotSpot Client JVMs

•  Prior to Java 7, if you run out of code cache space
•  JVM prints a warning message:

“CodeCache is full. Compiler has been disabled.”

“Try increasing the code cache size using -XX:ReservedCodeCacheSize=“

•  Common symptom … application mysteriously slows
down after its been running for a lengthy period of time
•  Generally, more likely to see on (large) enterprise class apps

Code cache

•  How to monitor code cache space
•  Can’t periodically look at code cache space occupancy with

monitoring tools such as JConsole

•  JIT compiler will continue to mark code that’s no longer valid, but
will not re-initiate new compilations, i.e. -XX:+PrintCompilation
shows “made not entrant” and “made zombie”, but not new
activations
•  So, code cache could look like it has available space via JConsole

when in reality it is exhausted – can be very misleading!

Code cache

•  Advice
•  Profile app with profiler that also profiles the internals of the JVM

•  Look for high JVM Interpreter CPU time

•  Check log files for log message saying code cache is full

•  Use -XX:+UseCodeCacheFlushing (Java 6u* releases & later)
•  Will evict least recently used code from code cache

•  Possible for compiler thread to cycle (optimize, throw away,
optimize, throw away), but that’s better than disabled compilation

•  Best option, increase -XX:ReservedCodeCacheSize, or do both
+UseCodeCacheFlushing & increase ReservedCodeCacheSize

Code cache

•  Java 7 and forward
•  -XX:+UseCodeCacheFlushing is on by default

•  But, “flushing” may be an intrusive operation for the JIT compiler if
there are a lot of additional demands made on it, i.e. new
activations, code invalidations

•  May need to tune -XX:CodeCacheMinimumFreeSpace and
-XX:MinCodeCacheFlushingInterval

Code cache

•  Java 7 and forward
•  -XX:+UseCodeCacheFlushing is on by default

•  But, “flushing” may be an intrusive operation for the JIT compiler if
there are a lot of additional demands made on it, i.e. new
activations, code invalidations

•  May need to tune -XX:CodeCacheMinimumFreeSpace and
-XX:MinCodeCacheFlushingInterval

•  Advice
•  Profile with a profiler that also profiles JVM internals and look for

high amounts of CPU used in code cache flushing

•  Best option, increase -XX:ReservedCodeCacheSize, tune code
cache flushing as a secondary activity

Agenda

•  What you need to know about GC

•  What you need to know about JIT compilation

•  Tools to help you

GC Analysis Tools

•  Offline mode, after the fact
•  GCHisto or GCViewer (search for “GCHisto” or “chewiebug

GCViewer”) – both are GC log visualizers

•  Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

GC Analysis Tools

•  Offline mode, after the fact
•  GCHisto or GCViewer (search for “GCHisto” or “chewiebug

GCViewer”) – both are GC log visualizers

•  Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

•  Online mode, while application is running
•  VisualGC plug-in for VisualVM (found in JDK’s bin directory,

launched as 'jvisualvm’ – then install VisualGC plug-in)

GC Analysis Tools

•  Offline mode, after the fact
•  GCHisto or GCViewer (search for “GCHisto” or “chewiebug

GCViewer”) – both are GC log visualizers

•  Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

•  Online mode, while application is running
•  VisualGC plug-in for VisualVM (found in JDK’s bin directory,

launched as 'jvisualvm’ – then install VisualGC plug-in)

•  VisualVM or Eclipse MAT for unnecessary object
allocation and object retention

JIT Compilation Analysis Tools

•  Command line tools
•  -XX:+PrintOptoAssembly

•  Requires “fastdebug JVM”, can be built from OpenJDK sources

•  Offers the ability to see generated assembly code with Java code

•  Lots of output to digest

JIT Compilation Analysis Tools

•  Command line tools
•  -XX:+PrintOptoAssembly

•  Requires “fastdebug JVM”, can be built from OpenJDK sources

•  Offers the ability to see generated assembly code with Java code

•  Lots of output to digest

•  -XX:+LogCompilation
•  Must add -XX:+UnlockDiagnosticVMOptions, but “fastdebug JVM”

not required

•  Produces XML file that shows the path of JIT compiler optimizations

•  Non-trivial to read and understand

•  Search for “HotSpot JVM LogCompilation” for more details

JIT Compilation Analysis Tools

•  GUI Tools
•  Oracle Solaris Studio Performance Analyzer (my favorite)

•  Works with both Solaris and Linux (x86/x64 & SPARC)

•  Better experience on Solaris (more mature, ported to Linux a couple
years ago, and no CPU microstate info on Linux)

•  See generated JIT compiler code embedded with Java source

•  Free download (search for “Studio Performance Analyzer”)

•  Excellent method profiler, lock profiler and hardware counter profiler
(i.e. CPU cache misses, TLB misses, instructions retired, etc.)

•  Similar tools
•  Intel VTune

•  AMD CodeAnalyst

Agenda

•  What you need to know about GC

•  What you need to know about JIT compilation

•  Tools to help you

Acknowledgments

•  Special thanks to Tony Printezis and John Coomes.
Some of the GC related material, especially the “GC
friendly”, is material originally drafted by Tony & John [1]

•  And thanks to Tom Rodriguez and Vladimir Kozlov for
sharing their HotSpot JIT compiler expertise and advice

[1]: Garbage Collection Friendly Programming. Printezis, Coomes, 2007 JavaOne Conference, San Francisco, CA

Additional Reading Material

•  Java Performance. Hunt, John. 2011
•  High level overview of how the Java HotSpot VM works including

both JIT compiler and GC along with “step by step” JVM tuning

•  The Garbage Collection Handbook. Jones, Hosking, Moss.
2012
•  Just about anything and everything you’d ever want to know about

GCs, (used in any programming language)

•  Sea of Nodes Compilation Approach. Chang. 2010,
http://www.masonchang.com/blog/2010/8/9/sea-of-nodes-compilation-approach.html

•  A summary of the compilation approach used by Java HotSpot VM’s
server (JIT) compiler

