The Fundamentals of JVM
Tuning

Charlie Hunt
Architect, Performance Engineering
Salesforce.com

alesforce
-

In a Nutshell

What you need to know about a modern JVM to be
effective at tuning it ...

sale;];@
B -

In a Nutshell

What you need to know about a modern JVM to be
effective at tuning it ... and ...

sale;];@
B -

In a Nutshell

What you need to know about a modern JVM to be
effective at tuning it ... and ...

What you need to know about a modern JVM to

realize good performance when writing Java code

sale;];@
B -

Who is this guy?

- Charlie Hunt

* Architect of Performance Engineering at Salesforce.com
Former Java HotSpot VM Performance Architect at Oracle

20+ years of (general) performance experience

14 years of Java performance experience

 Lead author of Java Performance, published Sept. 2011

Charlie Hunt * Binu John
rds by James Gosling and Steve Wi

Java
Performance

Agenda

* What you need to know about GC
» What you need to know about JIT compilation

* Tools to help you

Agenda

» What you need to know about GC
» What you need to know about JIT compilation

* Tools to help you

salesforce

%

—

Java HotSpot VM Heap Layout

From To
Survivor Survivor

— The Java Heap

Old Generation
For older / longer living objects

Permanent Generation
for VM & class meta-data

salesforce

%

—

Java HotSpot VM Heap Layout

New object
allocations

From To
Survivor Survivor

— The Java Heap

Old Generation
For older / longer living objects

Permanent Generation
for VM & class meta-data

salesforce

%

—

Java HotSpot VM Heap Layout

Retention / aging of young

New object objects during minor GCs

allocations

From , 10
Eden Survivor _ Sarvivor

— The Java Heap

Old Generation
For older / longer living objects

Permanent Generation
for VM & class meta-data

salesforce

%

—

Java HotSpot VM Heap Layout

Retention / aging of young

New object objects during minor GCs

allocations

From , 10
Eden Survivor _ Sarvivor

Promotions of longer
lived objects during

minor GCs — The Java Heap

Old Generation
For older / longer living objects

Permanent Generation
for VM & class meta-data

salesforce

%

—

Important Concepts (1 of 4)

* Frequency of minor GC is dictated by

» Application object allocation rate

« Size of the eden space

sale j‘brce

Important Concepts (1 of 4)

* Frequency of minor GC is dictated by

» Application object allocation rate

« Size of the eden space
* Frequency of object promotion into old generation is
dictated by

* Frequency of minor GCs (how quickly objects age)

« Size of the survivor spaces (large enough to age effectively)

|ldeally promote as little as possible (more on this a bit later)

sal ej‘érce

—

Important Concepts (2 of 4)

* Object retention can degrade performance more tha
object allocation

Important Concepts (2 of 4)

* Object retention can degrade performance more tha
object allocation

* |In other words, the longer an object lives, the greater the
impact on throughput, latency and footprint

Important Concepts (2 of 4)

* Object retention can degrade performance more tha
object allocation

* |In other words, the longer an object lives, the greater the
impact on throughput, latency and footprint
* Obijects retained for a longer period of time
» Occupy available space in survivor spaces
 May get promoted to old generation sooner than desired

« May cause other retained objects to get promoted earlier

salesforce

%

—

Important Concepts (2 of 4)

* Object retention can degrade performance more tha
object allocation

* |In other words, the longer an object lives, the greater the
impact on throughput, latency and footprint
* Obijects retained for a longer period of time
» Occupy available space in survivor spaces
 May get promoted to old generation sooner than desired
« May cause other retained objects to get promoted earlier
« GC only visits live objects

« GC duration is a function of the number of live objects and
object graph complexity slesforce

%

—

Important Concepts (3 of 4)

* Obiject allocation is very cheap!

« 10 CPU instructions in common case

sale j‘brce

Important Concepts (3 of 4)

* Obiject allocation is very cheap!

« 10 CPU instructions in common case

* Reclamation of new objects is also very cheap!

 Remember, only live objects are visited in a GC

sale j‘brce

Important Concepts (3 of 4)

* Obiject allocation is very cheap!

« 10 CPU instructions in common case

* Reclamation of new objects is also very cheap!

 Remember, only live objects are visited in a GC

« Don'’t be afraid to allocate short lived objects

« ... especially for immmediate results

sale j‘brce

Important Concepts (3 of 4)

Obiject allocation is very cheap!

« 10 CPU instructions in common case

Reclamation of new objects is also very cheap!

 Remember, only live objects are visited in a GC

Don’t be afraid to allocate short lived objects

« ... especially for immmediate results

GCs love small immutable objects and short-lived
objects

+ ... especially those that seldom survive a minor GC

sale j%rce

Important Concepts (4 of 4)

- But, don’t go overboard

sal ey%rce

Important Concepts (4 of 4)

- But, don’t go overboard

« Don’t do “needless” allocations

salesforce

—

Important Concepts (4 of 4)

- But, don’t go overboard

Don’'t do “needless” allocations

.. more frequent allocations means more frequent GCs
.. more frequent GCs imply faster object aging
.. faster promotions

.. more frequent needs for possibly either; concurrent old
generation collection, or old generation compaction (i.e. full
GC) ... or some kind of disruptive GC activity

salesforce

%

—

Important Concepts (4 of 4)

- But, don’t go overboard

Don’'t do “needless” allocations

.. more frequent allocations means more frequent GCs
.. more frequent GCs imply faster object aging
.. faster promotions

.. more frequent needs for possibly either; concurrent old
generation collection, or old generation compaction (i.e. full
GC) ... or some kind of disruptive GC activity

* It is better to use short-lived immutable objects than
long-lived mutable objects

sale :sfbrce

—

AN

(———+
* After application initialization phase, only experience
minor GCs and old generation growth is negligible

Ideal Situation

 l|deally, never experience need for old generation collection

* Minor GCs are (generally) the fastest GC

sale y%rce

Advice on choosing a GC

« Start with Parallel GC (-XX:+UseParallelOldGC)

« Parallel GC offers the fastest minor GC times

 If you can avoid full GCs, you'll likely achieve the best throughput
and lowest latency

sale y%rce

Advice on choosing a GC

« Start with Parallel GC (-XX:+UseParallelOldGC)

« Parallel GC offers the fastest minor GC times

 If you can avoid full GCs, you'll likely achieve the best throughput
and lowest latency

* Move to CMS or G1 if needed (for old gen collections)
 CMS minor GC times are slower due to promotion into “free lists”
« CMS full GC avoided via old generation concurrent collection

* G1 minor GC times are slower due to “remembered set”
overhead

« G1 full GC avoided via concurrent collection and fragmentation
avoided by “partial” old generation collection salesforce

%

—

GC Friendly Programming (1 of 3)

 Large objects J

« Expensive (in terms of time & CPU instructions) to allocate

« Expensive to initialize (remember Java Spec ... object zeroing)

sale y%rce

GC Friendly Programming (1 of 3)

 Large objects J

« Expensive (in terms of time & CPU instructions) to allocate

« Expensive to initialize (remember Java Spec ... object zeroing)

 Large objects of different sizes can cause Java heap

fragmentation

* A challenge for CMS, not so much so with ParallelGC or G1

sale j‘brce

GC Friendly Programming (1 of 3) &Y

- Large objects Jm J

« Expensive (in terms of time & CPU instructions) to allocate

« Expensive to initialize (remember Java Spec ... Object zeroing)

 Large objects of different sizes can cause Java heap
fragmentation
* A challenge for CMS, not so much so with ParallelGC or G1

* Advice,

« Avoid large object allocations if you can

Especially frequent large object allocations during application
“steady state”
saley‘brce

%

—

GC Friendly Programming (2 of 3) &Y

- Data Structure Re-sizing J@ J

« Avoid re-sizing of array backed collections / containers

« Use the constructor with an explicit size for the backing array

sale j‘brce

GC Friendly Programming (2 of 3) &Y

- Data Structure Re-sizing J@ J

« Avoid re-sizing of array backed collections / containers

« Use the constructor with an explicit size for the backing array

* Re-sizing leads to unnecessary object allocation

« Also contributes to Java heap fragmentation

GC Friendly Programming (2 of 3) &Y

- Data Structure Re-sizing Jm .J

« Avoid re-sizing of array backed collections / containers

« Use the constructor with an explicit size for the backing array

* Re-sizing leads to unnecessary object allocation

« Also contributes to Java heap fragmentation

* Object pooling potential issues

« Contributes to number of live objects visited during a GC
« Remember GC duration is a function of live objects

* Access to the pool requires some kind of locking

* Frequent pool access may become a scalability issue
saley‘brce

—

GC Friendly Programming (3 of 3)

 Finalizers

saley%rce
o

—

GC Friendly Programming (3 of 3)

 Finalizers

 PPP-lleeeaa-ssseee don't do it!

saley%rce
o

—

GC Friendly Programming (3 of 3)

Finalizers

PPP-lleeeaa-ssseee don't do it!
Requires at least 2 GCs cycles and GC cycles are slower

If possible, add a method to explicitly free resources when done
with an object

« Can't explicitly free resources?

» Use Reference Objects as an alternative

— See JDK's DirectByteBuffer.java implementation for an example use

salesforce

%

S—

GC Friendly Programming (3 of 3)

« SoftReferences

saley%rce
o

—

GC Friendly Programming (3 of 3)

« SoftReferences

 PPP-lleeeaa-ssseee don't do it!

salesforce

%

—

GC Friendly Programming (3 of 3)

« SoftReferences

 PPP-lleeeaa-ssseee don't do it!

« Referent is cleared by GC

« JVM GC'’s implementation determines how aggressive they are
cleared

* In other words, the JVM GC'’s implementation really dictates the
degree of object retention

« Remember the relationship to object retention
Higher object retention, longer GC pause times

Higher object retention, more frequent GC pauses

saley%rce
o

—

GC Friendly Programming (3 of 3)

« SoftReferences

 PPP-lleeeaa-ssseee don't do it!

« Referent is cleared by GC

« JVM GC'’s implementation determines how aggressive they are
cleared

* In other words, the JVM GC'’s implementation really dictates the
degree of object retention
« Remember the relationship between object retention
Higher object retention, longer GC pause times

Higher object retention, more frequent GC pauses

* IMO, SoftReferences == bad ideal! slesforce

%

—

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

protected void finalize() { // do some cleanup }

}

class MyClass extends ClassWithFinalizer {

private byte[] buffer = new byte[1024 * 1024 * 2];

* QObject retention consequences of MyClass?

sﬂg?%nr

—

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

protected void finalize() { // do some cleanup }

}

class MyClass extends ClassWithFinalizer {

private byte[] buffer = new byte[1024 * 1024 * 2];

* QObject retention consequences of MyClass?
* Atleast 2 GC cycles to free the byte[] buffer

* How to lower the object retention?

SM??%KB

—

Subtle Object Retention (1 of 2)

class ClassWithFinalizer {

protected void finalize() { // do some cleanup }

}

class MyClass extends ClassWithFinalizer {

private byte[] buffer = new byte[1024 * 1024 * 2];

* QObject retention consequences of MyClass?
* Atleast 2 GC cycles to free the byte[] buffer

* How to lower the object retention?

class MyClass {

private ClassWithFinalizer classWithFinalizer;

private byte[] buffer = new byte[1024 * 1024 * 2];

SM??%KB

—

Subtle Object Retention (2 of 2)

 What about inner classes?

sal gsﬁ)rce

Subtle Object Retention (2 of 2)

 What about inner classes?

 Remember that inner classes have an implicit reference to the
outer instance

» Potentially can increase object retention

* Again, increased object retention ... more live objects at
GC time ... increased GC duration

sal gsﬁ)rce

Fundamentals - Minor GCs

[EHID

« Minor GC Frequency — How often they occur

« Dictated by object allocation rate and size of eden space
 Higher allocation rate or smaller eden = more frequent minor GC

« Lower allocation rate or larger eden = less frequent minor GC

sal ej‘érce

—

Fundamentals - Minor GCs

[EHID

« Minor GC Frequency — How often they occur
« Dictated by object allocation rate and size of eden space
 Higher allocation rate or smaller eden = more frequent minor GC

« Lower allocation rate or larger eden = less frequent minor GC

* Minor GC Pause Time
« Dictated (mostly) by # of live objects

« Some deviations of course, number of reference objects, object
graph structure, number of promotions to old gen

salesforce

%

—

Fundamentals — Full GC Frequency

[EHID

* Full GC Frequency — How often they occur
* For Parallel GC (and Serial GC)

» Dictated by promotion rate and size of old generation space
» Higher promotion rate or smaller old gen = more frequent full GC

* Lower promotion rate or larger old gen = less frequent full GC

sal eyf)rce

Fundamentals — Full GC Frequency

[IREHID

* Full GC Frequency — How often they occur
* For Parallel GC (and Serial GC)

» Dictated by promotion rate and size of old generation space
» Higher promotion rate or smaller old gen = more frequent full GC

* Lower promotion rate or larger old gen = less frequent full GC

* For CMS & G1 — a bit more complex!
« Dictated by promotion rate, time to execute a concurrent cycle and
when the concurrent cycle is initiated — potential for “losing the race”

Some differences between CMS & G1 concurrent cycles

« Also for CMS, also dictated by frequency of old gen fragmentation, a
situation that requires old gen compaction via a full GC

* G1 has shown to combat fragmentation very well saley‘brce

%

—

Fundamentals — Concurrent Cycle Frequency

* For CMS & G1, Concurrent Cycle Frequency

« Dictated by the promotion rate, size of old gen and when
concurrent cycle is initiated (a heap occupancy threshold)
« CMS initiating threshold is a percent of old gen occupancy
* G1 initiating threshold is a percent of the entire Java heap, not just
old gen occupancy
 Remember concurrent cycles execute at the same time as your
application taking CPU from your application

Fundamentals — Full GC Pause Time

[EHID

* For Parallel GC (or Serial GC)
« Dictated (mostly) by # of live objects

« Some deviations of course, number of reference objects, object
graph structure, etc

salesforce

Fundamentals — Full GC Pause Time

* For CMS or GG1

« Almost always a very lengthy pause
« Expect a much longer pause than Parallel Old GC'’s full GC

« Single threaded

« CMS - in reaction to a promotion failure; “losing the race” (concurrent
cycle did not finish in time) or fragmentation (old generation requires
compaction)

 G1 - in reaction to there not being enough space available to
evacuate live objects to an available region “to-space overflow”
« May have to “undo” reference updates due to promotion failure or
to-space overflow — a time consuming operation

sale‘sfbrce
o

—

Agenda

« What you need to know about GC
« What you need to know about JIT compilation

* Tools to help you

salesforce

%

—

Important Concepts

- Optimization decisions are made based on hlﬂ]]ﬂ,

* Classes that have been loaded and code paths executed
« JIT compiler does not have full knowledge of entire program

* Only knows what has been classloaded and code paths executed

salesforce

Important Concepts

- Optimization decisions are made based on hlﬂ]]ﬂ,

Classes that have been loaded and code paths executed
JIT compiler does not have full knowledge of entire program
Only knows what has been classloaded and code paths executed

Hence, optimization decisions makes assumptions about how a
program has been executing — it knows nothing about what has
not been classloaded or executed

salesforce

%

—

Important Concepts

- Optimization decisions are made based on hlﬂ]]ﬂ,

Classes that have been loaded and code paths executed
JIT compiler does not have full knowledge of entire program
Only knows what has been classloaded and code paths executed

Hence, optimization decisions makes assumptions about how a
program has been executing — it knows nothing about what has
not been classloaded or executed

Assumptions may turn out (later) to be wrong ... it must be to
“recover” which (may) limit the type(s) of optimization(s)

New classloading or code path ... possible de-opt/re-opt

sal ey%rce

—

Inlining and Virtualization, Completing Forces

« Greatest optimization impact realized from “method
Inlining”
* Virtualized methods are the biggest barrier to inlining

 Good news ... JIT compiler can de-virtualize methods if it only sees
1 implementation of a virtualized method ... effectively makes it a
mono-morphic call

salesforce

%

—

Inlining and Virtualization, Completing Forces

« Greatest optimization impact realized from “method
Inlining”
« Virtualized methods are the biggest barrier to inlining
 Good news ... JIT compiler can de-virtualize methods if it only sees

1 implementation of a virtualized method ... effectively makes it a
mono-morphic call

 Bad news ... if JIT compiler later discovers an additional
implementation it must de-optimize, re-optimize for 2nd
implementation ... now we have a bi-morphic call

* This type of de-opt & re-opt will likely lead to lesser peak
performance, especially true when / if you get to the 3rd
implementation because now its a mega-morphic call

saley‘brce
o

S —

Inlining and Virtualization, Completing Forces

 Important point(s)

 Discovery of additional implementations of virtualized methods
will slow down your application

salesforce

Inlining and Virtualization, Completing Forces

 Important point(s)

 Discovery of additional implementations of virtualized methods
will slow down your application

* How ‘bout writing “JIT Compiler Friendly Code™ ?

sale j‘brce

Inlining and Virtualization, Completing Forces

 Important point(s)

 Discovery of additional implementations of virtualized methods
will slow down your application

* How ‘bout writing “JIT Compiler Friendly Code™ ?

* Ahh, that's a premature optimization!

salesforce

Inlining and Virtualization, Completing Forces

 Important point(s)

 Discovery of additional implementations of virtualized methods
will slow down your application

* How ‘bout writing “JIT Compiler Friendly Code™ ?

* Ahh, that's a premature optimization!
* Advice?

sale y%rce

Inlining and Virtualization, Completing Forces

 Important point(s)

 Discovery of additional implementations of virtualized methods
will slow down your application

* How ‘bout writing “JIT Compiler Friendly Code™ ?

* Ahh, that's a premature optimization!
* Advice?

« Write code in its most natural form, let the JIT compiler agonize
over how to best optimize it

« Use tools to identify the problem areas and make code changes
as necessary salesforce

%

—

Code cache, the “hidden space”

From To
Survivor Survivor

— The Java Heap

Old Generation
For older / longer living objects

Permanent Generation

for VM & class meta-data
Code cache : holds JIT compiled code

Code cache

« Default size is 48 megabytes for HotSpot Server JVM

* Increased to 96 megabytes for Java 8
+ 32 megabytes in HotSpot Client JVMs

 Prior to Java 7, if you run out of code cache space

* JVM prints a warning message:
“CodeCache is full. Compiler has been disabled.”

“Try increasing the code cache size using -XX:ReservedCodeCacheSize="

« Common symptom ... application mysteriously slows
down after its been running for a lengthy period of time
« Generally, more likely to see on (large) enterprise class.apps

sal ey%rce

—

Code cache

* How to monitor code cache space

- Can’t periodically look at code cache space occupancy with
monitoring tools such as JConsole

« JIT compiler will continue to mark code that’s no longer valid, but
will not re-initiate new compilations, i.e. -XX:+PrintCompilation
shows “made not entrant” and “made zombie”, but not new
activations

» So, code cache could look like it has available space via JConsole
when in reality it is exhausted — can be very misleading!

sa]gsﬁrce

—

Code cache

* Advice

Profile app with profiler that also profiles the internals of the JVM
* Look for high JVM Interpreter CPU time

Check log files for log message saying code cache is full

Use -XX:+UseCodeCacheFlushing (Java 6u* releases & later)
« Will evict least recently used code from code cache
» Possible for compiler thread to cycle (optimize, throw away,
optimize, throw away), but that’s better than disabled compilation
Best option, increase -XX:ReservedCodeCacheSize, or do both
+UseCodeCacheFlushing & increase ReservedCodeCacheSize

saley‘brce
o

—

Code cache

- Java 7 and forward
« -XX:+UseCodeCacheFlushing is on by default

« But, “flushing” may be an intrusive operation for the JIT compiler if
there are a lot of additional demands made on it, i.e. new
activations, code invalidations

* May need to tune -XX:CodeCacheMinimumFreeSpace and
-XX:MinCodeCacheFlushinglinterval

saley‘brce
o

—

Code cache

- Java 7 and forward

« -XX:+UseCodeCacheFlushing is on by default
« But, “flushing” may be an intrusive operation for the JIT compiler if
there are a lot of additional demands made on it, i.e. new
activations, code invalidations

« May need to tune -XX:CodeCacheMinimumFreeSpace and
-XX:MinCodeCacheFlushinglinterval

* Advice

* Profile with a profiler that also profiles JVM internals and look for
high amounts of CPU used in code cache flushing

« Best option, increase -XX:ReservedCodeCacheSize, tune code

cache flushing as a secondary activity
saleg‘(‘)rce

%

S S—

Agenda

* What you need to know about GC
» What you need to know about JIT compilation

* Tools to help you

GC Analysis Tools

« Offline mode, after the fact

« GCHisto or GCViewer (search for “GCHisto” or “chewiebug
GCViewer”) — both are GC log visualizers

 Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

sal ej‘érce

—

GC Analysis Tools

« Offline mode, after the fact

« GCHisto or GCViewer (search for “GCHisto” or “chewiebug
GCViewer”) — both are GC log visualizers

 Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

* Online mode, while application is running

* VisualGC plug-in for VisualVM (found in JDK’s bin directory,
launched as 'jvisualvm’ — then install VisualGC plug-in)

salesforce

GC Analysis Tools

« Offline mode, after the fact

« GCHisto or GCViewer (search for “GCHisto” or “chewiebug
GCViewer”) — both are GC log visualizers

 Recommend -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps or
-XX:+PrintGCDateStamps JVM command line options

* Online mode, while application is running

* VisualGC plug-in for VisualVM (found in JDK’s bin directory,
launched as 'jvisualvm’ — then install VisualGC plug-in)

* VisualVM or Eclipse MAT for unnecessary object
allocation and object retention

salesforce

JIT Compilation Analysis Tools

« Command line tools
o -XX:+PrintOptoAssembly

* Requires “fastdebug JVM”, can be built from OpenJDK sources

« Offers the ability to see generated assembly code with Java code

» Lots of output to digest

sal ey%rce

—

JIT Compilation Analysis Tools

« Command line tools
o -XX:+PrintOptoAssembly

* Requires “fastdebug JVM”, can be built from OpenJDK sources

« Offers the ability to see generated assembly code with Java code
» Lots of output to digest
« -XX:+LogCompilation
* Must add -XX:+UnlockDiagnosticVMOptions, but “fastdebug JVM”
not required
* Produces XML file that shows the path of JIT compiler optimizations
* Non-trivial to read and understand

» Search for “HotSpot JVM LogCompilation” for more details
saley‘brce

S —

JIT Compilation Analysis Tools

« GUI Tools

* Oracle Solaris Studio Performance Analyzer (my favorite)
» Works with both Solaris and Linux (x86/x64 & SPARC)

» Better experience on Solaris (more mature, ported to Linux a couple
years ago, and no CPU microstate info on Linux)

» See generated JIT compiler code embedded with Java source
* Free download (search for “Studio Performance Analyzer”)

» Excellent method profiler, lock profiler and hardware counter profiler
(i.e. CPU cache misses, TLB misses, instructions retired, etc.)

 Similar tools

* Intel VTune
« AMD CodeAnalyst salesforee

%

—

Agenda

* What you need to know about GC
» What you need to know about JIT compilation

* Tools to help you

Acknowledgments

« Special thanks to Tony Printezis and John Coomes.

Some of the GC related material, especially the “GC
friendly”, is material originally drafted by Tony & John [1]

* And thanks to Tom Rodriguez and Vladimir Kozlov for
sharing their HotSpot JIT compiler expertise and advice

[1]: Garbage Collection Friendly Programming. Printezis, Coomes, 2007 JavaOne Conference, San Francisco, CA

ﬁ)rce
o

—

Additional Reading Material

« Java Performance. Hunt, John. 2011

« High level overview of how the Java HotSpot VM works including
both JIT compiler and GC along with “step by step” JVM tuning

» The Garbage Collection Handbook. Jones, Hosking, Moss.
2012

« Just about anything and everything you'd ever want to know about
GCs, (used in any programming language)

« Sea of Nodes Compilation Approach. Chang. 2010,

http://www.masonchang.com/bloa/2010/8/9/sea-of-nodes-compilation-approach.html

- A summary of the compilation approach used by Java HotSpot VM's
server (JIT) compiler
saley‘brce

%

—

Thank you!

