
Philadelphia
Emerging
Technology
For The

Enterprise

First to welcome you.
Claudia gave amazing talk.
Online advertising, fib
numbers

Aaron Patterson
@tenderlove

Rails Core Team

Ruby Core Team

enterprise gem
https://github.com/tenderlove/enterprise

https://github.com/tenderlove/enterprise
https://github.com/tenderlove/enterprise

Expense Reports

PDF

Concur

Fax

Email

PDF

PDF

Concur

Fax

Email

PDF

Email

When I previewed the fax in the
expense reporting system, there
were tons of these at the
bottom.

Rube Goldberg
Expense
Reporting System

We actually hired
Rube Goldberg to
design the system
back in the day.

Interfaces &
Adapters

It’s kind of genius because
there was a legacy
system, the fax machine,
they needed to support.

People want Email, so
we give them the
email interface, but it
actually just adapts
to the existing code

Imagine being in the
meeting where they
decided to do this.

Exploring the
internals of
Active Record

Title:

Also new things
in Rails 4

Title:

And some pictures of
my cat, but I’ll front
load those.

Title:

Order of Operations

❤ Cats
❤ My side gig
❤ Rails Four Stuff
❤ Active Record Internals

こんにちは、
わたしが社長です。

I think he only
speaks Japanese.

I love my cat!

“If your wondering why I contacted
you instead of Aaron it's because
I don't want to hear about his cat.
I'm interested in mastering Ruby.”

Ryan hates hearing
about my cat all the
time.

Since last
year.

I got married!

☑Adequate
Everything. Adequately.

Talk about some
of our services.

“You get what we
think you paid for”

Disrupt Space

Disrupt the Space of
Space Disruption

SEO
Optimization

To understand SEO, we must
understand the search
engine.

It says Search Engine
Optimization Optimization, but
that is what we do.

First Search Engine

First search engines
were invented in
1547 and were
steam powered.

Invented in holland and came to
the united states along with
Lief Erikson (who later went on
to invent cell phones).

In the US they were improved
to be gasoline powered with
pistons. You can tell this bit of
history from the names.

Leif Erikson
(Later invented Cell Phones)

Google The number of pistons
their search engine
has.

Yahoo!

The sound the exhaust
system for the engine
makes.

Bing
The sound of a
broken engine.

“faster!”
“better!”

“work damnit!”

By shouting, we can actually
improve the performance of
the search engine. Back when
shouting at machines actually
did something.

“buy!”
“cheap!”
“pills!”

Alexander
Searchkeyword

This lead to search engine
dowsers. They would use
dowsing rods to find the
right keywords from
dictionaries and shout
them at the search engine.

Doing Client Work.

For a small fee, I will come
to your house, read your
web page, and dowse the
right keywords for the
search engine

recruiterspam.com

Rails FOUROROR

Release Date:
September 2012

Rails.queue

Using the Queue

job = MyJob.new
Rails.queue << job

Consumer

Thread.new {
 while job = Rails.queue.pop
 job.run
 end
}

Problems.

“What about exceptions?”

“It’s queue specific.”

“What about serialization?”

“It’s queue specific.”

“What about job construction?”

“It must be marshallable.”

Job Construction

user = User.find 1
job = Job.new user
Rails.queue << jobNOPE

Job Construction

user = User.find 1
job = Job.new user.id
Rails.queue << job

Job Definition
class Job
 def initialize(user_id)
 @user_id = user_id
 end

 def run
 user = User.find @user_id
 #
 end
end

Too Many
Open Questions.

Rails.queue

Job Definition
class RailsJob
 def initialize(*args)
 @args = args.map { |a|
 ActiveRecord::Base === a ? a.id : a
 }
 end
end

class Job < RailsJob
 def run
 do_stuff user
 end
end

This got pulled out of master
months ago when we thought
there was going to be a release.
It seems like we could solve most
of the problems by writing a
Rails specific superclass.

minitest/spec

describe "whatever" do
 setup do
 # ...
 end

 it "does some stuff" do
 1.must_equal 1
 end

 describe "some other stuff" do
 it "does some other stuff" do
 'foo'.must_match /foo/
 end
 end
end

This is what a minitest/
spec looks like. It looks
very similar to RSpec,
but it isn’t.

class SomeTest < ActiveSupport::TestCase
 setup { # ... }

 test "some thing" do
 # ...
 end
end

Rails TestsHere is a Rails test with
some of the DSL features
that Rails adds on.

MiniTest::Spec
class SomeTest < MiniTest::Spec
 setup { # ... }

 it "some thing" do
 # ...
 end
end

If we compare this to
a minitest/spec test,
it looks very similar.

Refactor
class SomeTest < MiniTest::Spec
 class << self
 alias :test :it
 end

 setup { # ... }

 test "some thing" do
 # ...
 end
end

We can make the
appropriate change to
minitest/spec and now it
looks exactly the same.

AS::TestCase
class ActiveSupport::TestCase < MiniTest::Spec
 class << self
 alias :test :it
 end
end

class SomeTest < ActiveSupport::TestCase
 setup { # ... }

 test "some thing" do
 # ...
 end
end

The cool thing is that it’s
100% backwards
compatible. Works
exactly the same as
minitest/unit.

mt/spec superclass

> MiniTest::Spec.ancestors
=> [MiniTest::Spec,
MiniTest::Unit::TestCase, ...]

Free goodies!
describe "whatever" do
 it "does some stuff" do
 1.must_equal 1
 end

 describe "some other stuff" do
 it "does some other stuff" do
 'foo'.must_match /foo/
 end
 end
end

minitest/spec

Someone Talked!

“I like the aesthetic”

TurboLinks
I kid, I kid!

Streaming

Streaming data to the
client without
buffering.

ActionController::Live

Example
class BrowserController < ApplicationController
 include ActionController::Live

 def index
 100.times do
 response.stream.write "hello!\n"
 end
 response.stream.close
 end
end

Mix in

Stream

Applications

❤ Streaming ERB
❤ Infinite Stream APIs
❤ Server Sent Events

SSE Response
HTTP/1.1 200 OK
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Content-Type: text/event-stream
Transfer-Encoding: chunked

event: ping
data: {"ping":"2012-10-06T21:44:41-07:00"}

event: reload
data: {"changed":["/Users/aaron/git/lolwut/app/views/
users/"]}

SSE responses are infinite streams,
but browsers will fire a javascript
function every time an event is
received.

Puma

BrowserFS-Events

FS Events
When the FS changes,
it tells the webserver,
webserver tells the
browser All in the same

process.

Puma

BrowserConsole

DRB

DB Events

Socket

When a model changes,
a message is sent via
DRB running in the
Puma process. That also

notifies the
browser.

The Arrows

❤ DRB server
❤ SSE implementation
❤ JS Components

Streaming / Polling

We can use SSEs for
streaming or polling because
you can provide a connection
timeout.

(with timeout)

Pitfalls

Webserver

Some servers buffer the
response. Some are process
oriented vs thread oriented.

Long Responses

If your stream is infinite, it’s going
to keep that socket open for an
infinite amount of time. You need
to design for this. But this is why
we’re putting effort in to a thread
safe Rails.

Client Disconnect

There is only one reliable way to
tell if the client disconnected,
and that is to send data and
have it fail.

Send a ping
def index
 Thread.new(response.stream) do |stream|
 loop do
 begin
 stream.write ping_packet
 rescue IOError
 end
 end
 end

 begin
 response.stream.write generate_sse
 rescue IOError
 end
end

Use Polling

Faster Tests*
*they’re not actually faster (well, they might be)

Look at the speed
improvement, then talk
about how it works.

3.2.x
$ time rake test

[snip]

real 0m4.756s
user 0m4.147s
sys 0m0.582s

4.0.0.beta
$ time rake test

[snip]

real 0m1.934s
user 0m1.701s
sys 0m0.224s

Speed

0

1.25

2.5

3.75

5

Time

3.2 4.0

Where is the
bottleneck?

Time Breakdown

Rails 3.2 (1 test)

$ time ruby -I lib:test test/functional/
line_items_controller_test.rb

real 0m1.733s
user 0m1.518s
sys 0m0.203s

Rails 4.0 (1 test)

$ time ruby -I lib:test test/controllers/
line_items_controller_test.rb

real 0m1.753s
user 0m1.535s
sys 0m0.208s

Environment

$ time ruby -Ilib:test:. -rconfig/
environment -e ' '

real 0m1.442s
user 0m1.255s
sys 0m0.179s

Require the
environment, and do
nothing. Loads the
application.

How do the test
tasks work?

Sample Test Task

Rakefile
Rake::TestTask.new do |t|
 t.libs << "test"
 t.verbose = true
 t.warning = true
end

Test Run

/Users/aaron/.rbenv/versions/2.1.0-dev/bin/ruby -w
-I"lib:test"
-I"/Users/aaron/.rbenv/versions/2.1.0-dev/lib/ruby/
gems/2.1.0/gems/rake-10.0.4/lib" \
"/Users/aaron/.rbenv/versions/2.1.0-dev/lib/ruby/
gems/2.1.0/gems/rake-10.0.4/lib/rake/
rake_test_loader.rb" \
"test/test*.rb"

`rake test`
runs Ruby twice.

How does this relate
to Rails?

Rake + Rails

You app can have
custom Rake tasks
lib/tasks/**

In order to find
those, we need to
load your
application.

`rake test:units`

Rakefile

shells out

ruby test/**/*_test

App Load

`rake test:units` =
2 * app load time

`rake test` =
4 * app load time

Multiple Loads

Just Require

task :test do
 Dir['test/**/*_test'].each do |file|
 require file
 end
end

Challenges

Switching
Environments

Your app is a
singleton

What env is `rake`?

Change the env
before app load

If it loosk like you’re running a
test task, then change the env to
the test env.

Migrations

$ rake test
You have 1 pending migrations:
 20130401175825 CreateUsers
Run `rake db:migrate` to update your
database then try again.

loading schema.rb

Real Solution:
Remove Singleton

Rails 4.1

Active Record
Internals

Connection Pooling

Thread Safety

SQL Construction

Statement Caching

Connection
Pooling

Configuration

development:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 timeout: 5000

Pool Size Limit

Pool limit =~
Server threads

AR::Base.connection

Do Stuff

Check in connection

Send Response

Check-in

ActiveRecord::ConnectionManagement

Middleware class,
operates on the
connection associated
with the current thread.

Threads > Pool Size
is Just Fine™

Manual Checkout
Checkout
conn = ActiveRecord::Base.
 connection_handler.
 checkout

Checkin
ActiveRecord::Base.
 connection_handler.checkin(conn)

Reaping
production:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 dead_connection_timeout: 5
 reaping_frequency: 10
 timeout: 5000

How long has it been
checked out? How
often should we check?

If a thread dies,
what happens to
the connection?

Thread Safety

“Is XXX Library
Thread Safe?”

Short rant about
thread safety.

Everything is Thread Safe,
if you know the rules.

DB Connections
ARE NOT
Thread Safe

No locks around
socket operations

conn = ActiveRecord::Base.connection

t1 = Thread.new {
 loop do
 conn.execute “SOME SQL”
 end
}

t2 = Thread.new {
 loop do
 conn.execute “OTHER SQL”
 end
}

RACE

CONDITION

AR Objects
ARE NOT
Thread Safe

No locks around
read / write ops

person = Person.find 1

t1 = Thread.new {
 100.times do
 person.friends
 # ...
 end
}

t2 = Thread.new {
 100.times do
 person.friends = Object.new
 end
}

RACE

CONDITION
JRuby, probably
get an exception,
MRI, it may do the
right thing.

Underlying DS is a
hash with no locks

How do we
parallelize?
para-ella-ella-ella-eh-eh-eh-ize

Split Work by Type

work_queue = Queue.new
write_queue = Queue.new

Thread.new {
 loop do; work_queue << find_work; end
}

Thread.new {
 while job = work_queue.pop
 # process job
 write_queue << result
 end
}

Thread.new {
 while record = write_queue.pop; record.save; end
}

SQL Construction

Post.where(...).where(...).where(...)

.where() .where() .where()

AR::
Relation

AR::
Relation

AR::
Relation

Post.where.where.where

AR::Relation holds
Query Information

.first, .each, .to_a
AR::

Relation
AR::

Relation
AR::

Relation

ARel Builder

AR::PredicateBuilder

Convert to SQL
ARel Builder

SQL

Database

to_a => execute

Seems we’re doing lots of
work, but we have reduced it
some.

Statement Cache

Two Caches

❤ Query Cache
❤ Statement Cache

Query Cache:
Same Statement
Same Results

Post.find(1)
Post.find(1)
Post.find(1)
Post.find(1)
Post.find(1)
Post.find(1)

Only 1 Query

Statement Cache

Post.
where(..).
where(..).
find(x)

SELECT * FROM
“posts” WHERE ...
AND id = $1

❤ Generate SQL
❤ Send SQL
❤ Get a token
❤ Always send the token

Statement Cache

Saves Parse Time

Saves Planning Time

Saves Bandwidth

*Except on MySQL
But we’re at an Enterprise Conference, right?

Memory Increase

Cache Size Limit

LRU

Rails 4.1

Post.
where(..).
where(..).
find(x)

Problem is that when we
do this execution, we get
all these objects created.

.where() .where() .where()

AR::
Relation

AR::
Relation

AR::
Relation

Post.where.where.where.find(x)

... ... x

Cache all invariants

QUERY = CacheQuery do |variant|
 Post.where.where.where.find(variant)
end

QUERY.execute(params[:id])

Rails 4.1

Mamba Time

My Weight

Health Walk.

Go to 7-11, find gummies,
start buying them every
week. One day the guy
says “hey! Mamba Time!”

I am the guy that buys
gummy bears. I will be the
best damn gummy candy
buyer ever.

Find your
Mamba Time

Be the Best
Mamba Timer

Thank You!

Questions?

