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I WROTE THIS!
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PATTERNS?

1.) Independent Regions

77.) House For A Couple

247.) Paving With Cracks Between The Stones
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FUNCTIONAL 
PROGRAMMING?

• Purity - Same input, same 
output

• Known Range and Domain
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SOME DOMAINS LEND
THEMSELVES TO PURITY

scala> println("hello, world")
hello, world

scala> println("hello, world")
sod off
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SOME DON’T
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99 AND 44/100 PURE
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WHAT PATTERNS?

•Functional Interface
•Iterator
•Command
•Focused Mutability
•Customized Control Flow
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FUNCTIONAL INTERFACE
“We'll give all interfaces that have just one 

method a name: functional interfaces.”
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

Execute
 Subclass

Execute

Functional 
Interface
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SERENDIPITY
New ideas go through stages of acceptance, 
both from within and without. From within, the 
sequence moves from "barely seeing" a pattern 
several times, then noting it but not perceiving 
its "cosmic" significance, then using it 
operationally in several areas, then comes a 
"grand rotation" in which the pattern becomes 
the center of a new way of thinking, and 
finally, it turns into the same kind of 
inflexible religion that it originally 
broke away from.

Alan Kay - “The Early History Of Smalltalk”
© 1993 ACM 
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ITERATOR

“Provide a way to access the elements of an 
aggregate object sequentially without exposing 

its underlying representation.”
Design Patterns: Elements of Reusable Object-Oriented Software 
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COMMAND
“Provide a way to access the elements of an 

aggregate object sequentially without exposing 
its underlying representation.”

Design Patterns: Elements of Reusable Object-Oriented Software 

Create 
Command

Client

Invoke 
Command

Invoker

Execute

Command 
Subclass

Execute
Command

has a

passed to
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FOCUSED MUTABILITY

Use mutable data structures in small, 
performance sensitive parts of a pro- gram 
hidden inside of a function, while still using 
immutable data throughout the majority.

Me
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CUSTOM CONTROL FLOW

Create focused, custom control flow 
abstractions.

Me
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CONCLUSION CAT
CONCLUDES

Time to wrap it up.
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