
FUNCTIONAL
PROGRAMMING

PATTERNS

Michael Bevilacqua-Linn

Sr. Software Architect Comcast (CIM)

http://pragprog.com/book/mbfpp/

@novustiro mblinn.com

Saturday, April 20, 13

http://pragprog.com/book/mbfpp/
http://pragprog.com/book/mbfpp/

I WROTE THIS!

Saturday, April 20, 13

PATTERNS?

Saturday, April 20, 13

PATTERNS?

Saturday, April 20, 13

PATTERNS?

1.) Independent Regions

77.) House For A Couple

247.) Paving With Cracks Between The Stones

Saturday, April 20, 13

FUNCTIONAL
PROGRAMMING?

• Purity - Same input, same
output

• Known Range and Domain

Saturday, April 20, 13

SOME DOMAINS LEND
THEMSELVES TO PURITY

scala> println("hello, world")
hello, world

scala> println("hello, world")
sod off

Saturday, April 20, 13

SOME DON’T

Saturday, April 20, 13

RANDOM WEBSITE CIRCA
1998

Saturday, April 20, 13

RANDOM WEBSITE CIRCA
1998

Saturday, April 20, 13

99 AND 44/100 PURE

Saturday, April 20, 13

WHAT PATTERNS?

•Functional Interface
•Iterator
•Command
•Focused Mutability
•Customized Control Flow

Saturday, April 20, 13

FUNCTIONAL INTERFACE
“We'll give all interfaces that have just one

method a name: functional interfaces.”
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

Execute
 Subclass

Execute

Functional
Interface

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

SERENDIPITY
New ideas go through stages of acceptance,
both from within and without. From within, the
sequence moves from "barely seeing" a pattern
several times, then noting it but not perceiving
its "cosmic" significance, then using it
operationally in several areas, then comes a
"grand rotation" in which the pattern becomes
the center of a new way of thinking, and
finally, it turns into the same kind of
inflexible religion that it originally
broke away from.

Alan Kay - “The Early History Of Smalltalk”
© 1993 ACM

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

ITERATOR

“Provide a way to access the elements of an
aggregate object sequentially without exposing

its underlying representation.”
Design Patterns: Elements of Reusable Object-Oriented Software

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

COMMAND
“Provide a way to access the elements of an

aggregate object sequentially without exposing
its underlying representation.”

Design Patterns: Elements of Reusable Object-Oriented Software

Create
Command

Client

Invoke
Command

Invoker

Execute

Command
Subclass

Execute
Command

has a

passed to

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

FOCUSED MUTABILITY

Use mutable data structures in small,
performance sensitive parts of a pro- gram
hidden inside of a function, while still using
immutable data throughout the majority.

Me

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

CUSTOM CONTROL FLOW

Create focused, custom control flow
abstractions.

Me

Saturday, April 20, 13

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

CONCLUSION CAT
CONCLUDES

Time to wrap it up.

Saturday, April 20, 13

